
Getting started with AFS code

Perry Ruiter

EAKC2014

March 28

Agenda

• Background

• Environment/initial setup

• Where is the code?

• How do you build from the source?

• How to develop a fix and push it

upstream?

• Simple debug techniques

2

3

Teaching an old (sled) dog new tricks

• Live and work on the we(s)t coast of Canada

• 13 years as a VM systems programmer

– provincial government

– large mainframe environment

– primarily email and relational database

• 15 years as an operating system developer

– IBM z/VM

– mostly assembler; a little C

• No prior experience with AFS, Kerberos, Linux

4

My development environment

• Macbook Pro running CentOS Linux as

a VMWare guest

• Linux guest hosts test cell and clone of

git source repository

• Lots of memory and an SSD means

guest performance is surprisingly good

• SNA maintains a farm of supported

servers

5

Hurdles encountered creating test cell

• Documentation not always correct

– IBM Quickstart Guide

• Really need a guru for initial setup

– Linux/Kerberos skills would have helped

• SNA has looked at providing automated

cell creation appliance

– Meffie’s openafs-robotest on github

6

Where is the code?

• Code is maintained in a git repository

• Internally to Sine Nomine we have a

mirror that I clone/update from

• Externally you would clone from

git.openafs.org:

– git clone git://git.openafs.org/openafs.git

7

How to rebuild from the source …

• Install prerequisite programs

– varies by system

• Then simply standard make regimen

– ./regen.sh

– ./configure

– make

– make dest

8

How to rebuild from source

• make is extremely verbose

– save the output somewhere

– useful to check compiler options, etc.

• http://wiki.openafs.org/HowToBuildOpenAFSFromSource/

– More details and recommended configure options

9

http://wiki.openafs.org/HowToBuildOpenAFSFromSource/

Develop a fix and push it upstream …

• Configure git

– name, email address, options, etc.

• Register with gerrit (code review tool)

– need an OpenID and public key
– scp -p -P 29418 gerrit.openafs.org:hooks/commit-msg .git/hooks/

• Ensure your repository is current

– git pull --rebase

– alternatively git fetch + git rebase

10

Develop a fix and push it upstream …

• Create a new branch to contain your

changes

– git checkout –b branchname

• Now simply edit the source file(s) and

make your changes

• git add .

• make, test, rinse, repeat

11

Develop a fix and push it upstream …

• Create commit message

– git commit

– subsystem: change summary

• keep length under 72 characters

– blank line and fuller description

– git commit --amend

• Giving up and starting over

– git reset --hard

12

Develop a fix and push it upstream

• Finally push to gerrit
– git push ssh://gerrit.openafs.org/openafs.git HEAD:refs/for/master

• Community prefers several small

incremental updates to a single large

“big bang” update

• Other useful git commands

– git status, git log

• http://wiki.openafs.org/GitDevelopers/

13

http://wiki.openafs.org/GitDevelopers/
http://wiki.openafs.org/GitDevelopers/

Debug tips …

• SELinux

– disable for simple test environment

• rxdebug

– lots of useful information

– rxdebug host port [–version]

• Ports 7000, 7001, 7002, 7003, 7007,…

• packet trace

– UDP packets!

14

Debug tips

• fstrace (not to be confused with fs trace)

– circular buffer of cache manager trace

points

• increase process debug levels

– sudo kill –TSTP $(pgrep vlserver)

– sudo kill -HUP $(pgrep vlserver)

• http://docs.openafs.org/Reference/

15

http://wiki.openafs.org/GitDevelopers/
http://wiki.openafs.org/GitDevelopers/

 Contact: pruiter@sinenomine.net

16

