

Fast Automatic Beam-Based Alignment of the LHC Collimator Jaws

Accelerators & Technology Sector Seminar

Gianluca Valentino

Faculty of ICT (University of Malta)
BE-ABP-LCU (CERN)

Outline

- The Large Hadron Collider
- LHC Collimation System
- Collimator Beam-Based Alignment
- Alignment Algorithms
- Software Implementation
- Modeling and Simulation of Beam Losses
- Simulation and Operational Results
- Future: BPM-based alignment
- Conclusions

Cleaning

The Large Hadron Collider

LHC Machine Parameters

Circumference: 26650 m

Beam energy: 7 TeV (4 TeV)

Particle velocity: 0.999999991c

Bunch intensity: 1.15E11 protons

Bunches per beam: 2808 (1380)

Momentum

Cleaning

The Large Hadron Collider

LHC Machine Parameters

Circumference: 26650 m

Beam energy: 7 TeV (4 TeV)

Particle velocity: 0.999999991c

Bunch intensity: 1.15E11 protons

Bunches per beam: 2808 (1380)

Momentum

Cleaning

The Large Hadron Collider

LHC Machine Parameters

Circumference: 26650 m

Beam energy: 7 TeV (4 TeV)

Particle velocity: 0.999999991c

Bunch intensity: 1.15E11 protons

Bunches per beam: 2808 (1380)

Momentum

Cleaning

The Large Hadron Collider

LHC Machine Parameters

Circumference: 26650 m

Beam energy: 7 TeV (4 TeV)

Particle velocity: 0.999999991c

Bunch intensity: 1.15E11 protons

Bunches per beam: 2808 (1380)

Many settings, including collimators, changed along the machine cycle

Outline

- CERN and the Large Hadron Collider
- LHC Collimation System
- Collimator Beam-Based Alignment
- Alignment Algorithms
- Software Implementation
- Modeling and Simulation of Beam Losses
- Simulation and Operational Results
- Future: BPM-based alignment
- Conclusions

≤1 μm

LHC Collimation System

Shower

CFC

CFC

W/Cu

- Particles have a natural tendency to drift to the beam halo over time.
- Collimators passively scatter and intercept beam halo particles to:
 - Prevent quenches of the super-conducting magnets.
 - Limit irradiation of sensitive devices.
 - Reduce signal background in the experiment detectors.

W/Cu

≤1 μm

LHC Collimation System

Shower

CFC

CFC

W/Cu

- Particles have a natural tendency to drift to the beam halo over time.
- Collimators passively scatter and intercept beam halo particles to:
 - Prevent quenches of the super-conducting magnets.
 - Limit irradiation of sensitive devices.
 - Reduce signal background in the experiment detectors.

W/Cu

- Particles have a natural tendency to drift to the beam halo over time.
- Collimators passively scatter and intercept beam halo particles to:
 - Prevent quenches of the super-conducting magnets.
 - Limit irradiation of sensitive devices.
 - Reduce signal background in the experiment detectors.

Horizontal

CFC

≤1 μm

- Particles have a natural tendency to drift to the beam halo over time.
- Collimators passively scatter and intercept beam halo particles to:
 - Prevent quenches of the super-conducting magnets.
 - Limit irradiation of sensitive devices.
 - Reduce signal background in the experiment detectors.

- Collimators passively scatter and intercept beam halo particles to:
 - Prevent quenches of the super-conducting magnets.
 - Limit irradiation of sensitive devices.
 - Reduce signal background in the experiment detectors.

• The LHC is protected by a **collimation system** with 86 collimators (+ 14 transfer line).

• The LHC is protected by a **collimation system** with 86 collimators (+ 14 transfer line).

- The LHC is protected by a **collimation system** with 86 collimators (+ 14 transfer line).
- Each cleaning collimator consists of two moveable 'jaws' made of carbon, tungsten or copper.
- The jaws are positioned symmetrically around the beam for maximum cleaning efficiency.

Collimator Settings

• In the LHC, collimation is required **at all phases** (injection, ramp + squeeze, physics) due to high beam energy.

Collimator Settings

- In the LHC, collimation is required **at all phases** (injection, ramp + squeeze, physics) due to high beam energy.
- The collimator settings depend on key beam parameters e.g. energy, orbit and β -functions as a function of time, energy and/or β^* .
- Overall system performance depends critically on the correct positioning w.r.t. the beam.
- Unprecedented complexity: function-based settings, redundant interlocking strategy that change with time.
- Total of \sim 400 axes of motion to be monitored, compared to \sim 30 at the Tevatron.

Settings Parameter Space

S. Redaelli et al. EDMS LHC-TCT-ES-0001

21 LVDTs

Top-Layer

Middleware Infrastructure

Motors,
Position Readout

21 LVDTs

Top-Layer

Middleware Infrastructure

Motors,
Position Readout

21 LVDTs

Top-Layer

Middleware Infrastructure

Motors,
Position Readout

21 LVDTs

Top-Layer

Middleware Infrastructure

Motors,
Position Readout

Outline

- CERN and the Large Hadron Collider
- LHC Collimation System
- Collimator Beam-Based Alignment
- Alignment Algorithms
- Software Implementation
- Modeling and Simulation of Beam Losses
- Simulation and Operational Results
- Future: BPM-based alignment
- Conclusions

Triplet

• The **beam centre** and **beam size** at each collimator location must be measured at **4 points** in the machine cycle.

Triplet

• The **beam centre** and **beam size** at each collimator location must be measured at **4 points** in the machine cycle.

• The **beam centre** and **beam size** at each collimator location must be measured at **4 points** in the machine cycle.

shower

LHC Beam

magnet

TCT

➤ t [s]

TCDQ / TCSG IR6

The **beam centre** and **beam size** at each collimator location must be measured at 4 points in the machine cycle.

• By touching the beam with each jaw, these values can be determined.

TCLA

Collimator Jaw

Collimator Jaw

• A jaw is aligned when the characteristic loss spike is seen in the Beam Loss Monitoring (BLM) detector signal.

Halo

Core

Halo

Alignment Procedure

1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.

2. The collimator i is aligned to the beam.

LHC Collimation
Project

- 1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator i is aligned to the beam.

1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.

2. The collimator i is aligned to the beam.

LHC Collimation
Project

- 1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator i is aligned to the beam.

LHC Collimation
Project
CERN

- 1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator i is aligned to the beam.

1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.

2. The collimator i is aligned to the beam.

LHC Collimation
Project

- 1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator i is aligned to the beam.

Beam centre: $\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$

LHC Collimation
Project
CERN

- 1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator i is aligned to the beam.

Beam centre:
$$\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$$

LHC Collimation
Project
CERN

- 1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator i is aligned to the beam.

Beam centre:
$$\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$$

LHC Collimation
Project
CERN

- 1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator i is aligned to the beam.

Beam centre:
$$\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$$

LHC Collimation
Project
CERN

- 1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator i is aligned to the beam.

Beam centre:
$$\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$$

LHC Collimation
Project
CERN

- 1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator i is aligned to the beam.

Beam centre:
$$\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$$

LHC Collimation
Project
CERN

- 1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator i is aligned to the beam.

Beam centre:
$$\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$$

- 1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator i is aligned to the beam.

Beam centre:
$$\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$$

Beam size:
$$\sigma_i^m = \frac{x_i^{L,m} - x_i^{R,m}}{(n_1^{k-1} + n_1^{k+1})/2}$$

Reference

collimator

BLM_i

BLM_i

Collimator i

- 1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator i is aligned to the beam.

Beam centre:
$$\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$$

3. The TCP is realigned to determine the beam size at collimator *i*.

Beam size:
$$\sigma_i^m = \frac{x_i^{L,m} - x_i^{R,m}}{(n_1^{k-1} + n_1^{k+1})/2}$$

4. Collimator *i* is retracted to the new operational settings.

 BLM_{REF}

Beam

Beam

 BLM_{REF}

LHC Collimation
Project
CERN

- 1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator i is aligned to the beam.

Beam centre:
$$\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$$

3. The TCP is realigned to determine the beam size at collimator *i*.

Beam size:
$$\sigma_i^m = \frac{x_i^{L,m} - x_i^{R,m}}{(n_1^{k-1} + n_1^{k+1})/2}$$

4. Collimator *i* is retracted to the new operational settings.

Reference

collimator

LHC Collimation
Project
CERN

 BLM_i

BLM;

Collimator i

- 1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.
- 2. The collimator i is aligned to the beam.

Beam centre:
$$\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$$

3. The TCP is realigned to determine the beam size at collimator *i*.

Beam size:
$$\sigma_i^m = \frac{x_i^{L,m} - x_i^{R,m}}{(n_1^{k-1} + n_1^{k+1})/2}$$

4. Collimator *i* is retracted to the new operational settings.

 BLM_{REF}

 BLM_{REF}

Beam

BLM_i

BLM;

1. Both jaws of the TCP in the appropriate plane (Hor/Ver/Skew) are aligned to the beam.

 BLM_{REF}

2. The collimator i is aligned to the beam.

Beam centre:
$$\Delta x_i = \frac{x_i^{L,m} + x_i^{R,m}}{2}$$

Deam centre: $\Delta x_i = \frac{1}{2}$

3. The TCP is realigned to determine the beam size at collimator *i*.

Beam size:
$$\sigma_i^m = \frac{x_i^{L,m} - x_i^{R,m}}{(n_1^{k-1} + n_1^{k+1})/2}$$

4. Collimator *i* is retracted to the new operational settings.

$$x_i^{L,set} = \Delta x_i + N_i \sigma_i^m \quad x_i^{R,set} = \Delta x_i - N_i \sigma_i^m$$

Beam

• Manual collimator alignment is time-consuming and has an impact on the LHC physics program.

- Manual collimator alignment is time-consuming and has an impact on the LHC physics program.
- Manual alignment: operator needs to intervene for each jaw movement, decide which collimator jaw to align next, visually examine the loss spike and determine whether the jaw is aligned, ... ~30 hours in the worst-case!

- Manual collimator alignment is time-consuming and has an impact on the LHC physics program.
- Manual alignment: operator needs to intervene for each jaw movement, decide which collimator jaw to align next, visually examine the loss spike and determine whether the jaw is aligned, ... ~30 hours in the worst-case!
- Four alignments are required for different machine modes:- injection at 450 GeV, followed by flat top, squeezed beams and colliding beams at top energy.
- Fast alignments: could provide better operational flexibility
 - ⇒smaller hierarchy margins + more time for physics = more luminosity.

- Manual collimator alignment is time-consuming and has an impact on the LHC physics program.
- Manual alignment: operator needs to intervene for each jaw movement, decide which collimator jaw to align next, visually examine the loss spike and determine whether the jaw is aligned, ... ~30 hours in the worst-case!
- **Four alignments are required** for different machine modes:- injection at 450 GeV, followed by flat top, squeezed beams and colliding beams at top energy.
- Fast alignments: could provide better operational flexibility
 - ⇒smaller hierarchy margins + more time for physics = more luminosity.
- An intelligent automated system would be able to align the collimators in less time and without human errors.

Outline

- CERN and the Large Hadron Collider
- LHC Collimation System
- Collimator Beam-Based Alignment
- Alignment Algorithms
- Software Implementation
- Modeling and Simulation of Beam Losses
- Simulation and Operational Results
- Future: BPM-based alignment
- Conclusions

BLM Feedback Loop

- A **BLM feedback loop** was implemented as a first step in automating the alignment.
- **Input heuristics** developed over 2 years of setups (2009 2010) by R. Assmann et al.

Move in collimator by Δx_i^L			
and Δx_i^R every t_i^s seconds			
$ls L_i(t) \ge L_i^{Thres}?$			
No $\sum_{i=1}^{n} L_i$			
Yes			
, les			
Is Jaw Setup?			
No No			
Yes			
Dh.			
Stop Phy			

Input	Description	Heuristic
Δx_i^L	Left jaw step size in µm	5 – 20
Δx_i^R	Right jaw step size in µm	5 – 20
t_i^s	Time interval between each step in seconds	1 – 3
$S_i(t)$	BLM signal in Gy/s	5E-7 – 1E-4
S_i^{Thres}	Loss stop threshold in Gy/s	1E-6 – 2E-4

Phys. Rev. ST Accel. Beams, 15, 051002 (2012).

• Iterative algorithm to determine which collimator is at the beam after BLM signal crosstalk.

- Iterative algorithm to determine which collimator is at the beam after BLM signal crosstalk.
- Tested in MD (Machine Development) in July 2011.

• Tested in MD (Machine Development) in July 2011.

Automatic Threshold Selection

- Collimator setup can be automated further if the loss threshold is automatically chosen.
- Samples of the **steady-state BLM signal** in 20 second intervals and the **subsequent threshold** set by operator were collected.

Automatic Threshold Selection

- Collimator setup can be automated further if the loss threshold is automatically chosen.
- Samples of the **steady-state BLM signal** in 20 second intervals and the **subsequent threshold** set by operator were collected.

- The exponentially weighted moving average of each sample was determined.
- Larger weights assigned to most recent values.
- The threshold can be calculated in terms steady-state BLM signal:

$$S_i^{Thres} = 0.53584e^{0.85916x}$$

• Automatic classification of loss spikes is key to an automated setup procedure.

- Automatic classification of loss spikes is key to an automated setup procedure.
- Support Vector Machines (SVM): supervised-learning classification algorithm.

- Automatic classification of loss spikes is key to an automated setup procedure.
- Support Vector Machines (SVM): supervised-learning classification algorithm.
- A jaw is aligned to the beam when an **optimal spike** is observed.

- Automatic classification of loss spikes is key to an automated setup procedure.
- Support Vector Machines (SVM): supervised-learning classification algorithm.
- A jaw is aligned to the beam when an **optimal spike** is observed.
- If the spike is **non-optimal**, the jaw has to be moved in again.

Feature Selection

- **Six features** were selected to distinguish between optimal and non-optimal loss spikes.
- 1. Maximum BLM value observed after the threshold is exceeded.
- **2. Average** of the 3 smallest loss values of the 7 loss values preceding the maximum value.

3. Width of the Gaussian fit applied to the loss spike folded about the maximum value.

4. Gaussian fit correlation coefficient.

- 5. Power fit exponent.
- 6. Power fit correlation coefficient.

SVM Training and Results

- LIBSVM tool in MATLAB was used for training and testing the SVM model.
- The data were linearly scaled to [-1, +1] to avoid values in larger numeric ranges dominating those in smaller ranges.
- Grid search performed on C (over-fitting vs. under-fitting penalty factor) and (width of RBF) using 5-fold cross-validation to determine the optimal values for these parameters.
- 444 samples were used (222 for training and 222 for testing).

Gianluca Valentino

SVM Training and Results

- LIBSVM tool in MATLAB was used for training and testing the SVM model.
- The data were linearly scaled to [-1, +1] to avoid values in larger numeric ranges dominating those in smaller ranges.
- Grid search performed on C (over-fitting vs. under-fitting penalty factor) and (width of RBF) using 5-fold cross-validation to determine the optimal values for these parameters.
- 444 samples were used (222 for training and 222 for testing).

Parameter	Value				
Number of Features	6				
Number of Classes	2				
С	32768				
γ	0.125				
Kernel	RBF				
Training dataset prediction rate	97.2973 %				
Test dataset prediction rate	82.4324 %				
Overall prediction rate	89.8649 %				

Gianluca Valentino

SVM Training and Results

- **LIBSVM tool** in MATLAB was used for training and testing the SVM model.
- The data were linearly scaled to [-1, +1] to avoid values in larger numeric ranges dominating those in smaller ranges.
- Grid search performed on C (over-fitting vs. under-fitting penalty factor) and (width of RBF) using 5-fold cross-validation to determine the optimal values for these parameters.
- 444 samples were used (222 for training and 222 for testing).

Parameter	Value
Number of Features	6
Number of Classes	2
С	32768
γ	0.125
Kernel	RBF
Training dataset prediction rate	97.2973 %
Test dataset prediction rate	82.4324 %
Overall prediction rate	89.8649 %

Some unsuccessful classifications due to TCT alignments!

- An approximation to the beam centers at the collimators can be obtained from an interpolation of the orbit measured by the BPMs.
- This was exploited to speed up the alignment, assuming a **reproducible delta** between measurements and interpolation.
- All collimator jaws can be **moved directly to the tighter settings** at a rate of 2 mm/s instead of 0.01 mm/s.

- An approximation to the beam centers at the collimators can be obtained from an interpolation of the orbit measured by the BPMs.
- This was exploited to speed up the alignment, assuming a **reproducible delta** between measurements and interpolation.
- All collimator jaws can be **moved directly to the tighter settings** at a rate of 2 mm/s instead of 0.01 mm/s.

$$\begin{aligned} x_i^L &= x_i^{int.} + (N_{TCP} + N_{margin}) \times \sigma_i^n + \sigma_i^{m,int.} \\ x_i^R &= x_i^{int.} - (N_{TCP} + N_{margin}) \times \sigma_i^n - \sigma_i^{m,int.} \end{aligned}$$
 Typically < 1.5 mm

- $x_i^{int.}$: interpolated beam center at collimator *i*.
- N_{TC} half-gap of IR7 TCP in units of sigma.
- N_{margin} further margin over and above the IR7 TCP cut.
- σ_i^n the nominal 1-sigma beam size.
- $\sigma_i^{m,int.}$: the standard error between the interpolated and the measured center.

- An approximation to the beam centers at the collimators can be obtained from an interpolation of the orbit measured by the BPMs.
- This was exploited to speed up the alignment, assuming a reproducible delta between measurements and interpolation.
- All collimator jaws can be moved directly to the tighter settings at a rate of 2 mm/s instead of 0.01 mm/s.

$$\begin{aligned} x_i^L &= x_i^{int.} + \left(N_{TCP} + N_{margin}\right) \times \sigma_i^n + \sigma_i^{m,int.} \\ x_i^R &= x_i^{int.} - \left(N_{TCP} + N_{margin}\right) \times \sigma_i^n - \sigma_i^{m,int.} \end{aligned}$$
 Typically < 1.5 mm

- $x_i^{int.}$: interpolated beam center at collimator i.
- N_{TCP} half-gap of IR7 TCP in units of sigma.
- N_{margin} further margin over and above the IR7 TCP cut.
- σ_i^n the nominal 1-sigma beam size.
- $\sigma_i^{m,int.}$: the standard error between the interpolated and the measured center.

		BPM Initialia	zation			_ C ×
Collimator	BPM Center	Current Left	Current Right	New Left	New Right	
TCSGA5L7.B1	-0.373	2.105	- 2,585	2.112	-2.858	- f
TCP.C6R7.B2	0.150	2.030	-0.990	2.509	-2.210	
TCSG.6L7.B2	-0.421	3.180	-3.435	2.979	-3.821	₽
TCLA.7L3.82	-0.164	5.205	-5.545	1.491	-1.819	₽
TCLA.6L3.82	0.410	5.350	-6.125	2.616	-1.796	Z
TCLAB5L3.B2	-0.089	5.055	-7.360	2.278	-2.456	
TCSG.B5L3.B2	-0.150	2.940	-3.680	1.374	-1.674	≥
TCSGA5L3.B2	-0.160	2.510	-3.405	1.227	-1.548	₽ _
TCSG.4L3.82	-0.214	1.985	-2.595	0.916	-1.344	ℤ
TCSG.5R3.82	-0.168	2.865	-3.740	1.353	-1.688	R
TCP.6R3.B2	-0.114	3.850	-4.030	2.107	-2.336	R
TCLAA7L7.B2	-0.114	2.620	-1.245	1.532	-1.760	Z
TCLAD6L7.82	0.328	2.105	-1.730	1.965	-1.308	2
TCLA.B6L7.B2	-0.032	3.115	-2.890	2.389	-2.454	≥
TCSG.B4R7.B2	-0.268	1.165	-3.280	2.098	-2.635	Z
TCP.B6R7.E2	0.167	1.045	-1.515	2.203	-1.868	
TCSG.A5R7.B2	-0.069	2.885	-1.805	2416	-2.554	- L
	✓ Select	All				
	Half Gap (si	gma)	6 🔻	_		
	Center Delta	(mm)	0.5	7	Tool G	iUI
		Acqu	ire Move	Stop		
					-	-/-

Gianluca Valentino

		BPM Initialia	zation			- 0
Collimator	BPM Center	Current Left	Current Right	New Left	New Right	
TCSG.A5L7.B1	-0.373	2.105	-2.585	2.112	-2.858	
TCP.C6R7.B2	0.150	2.030	-0.990	2.509	-2.210	
TCSG.6L7.B2	-0.421	3.180	-3.435	2.979	-3.821	×
TCLA7L3.B2	-0.164	5.205	-5.545	1.491	-1.819	*
TCLA.6L3.B2	0.410	5.350	-6.125	2.616	-1.796	V
TCLAB5L3.B2	-0.089	5.055	-7.360	2.278	-2.456	V
TCSG.B5L3.B2	-0.150	2.940	-3.680	1.374	-1.674	N
TCSG.A5L3.B2	-0.160	2.510	- 3.405	1.227	-1.548	×
TCSG.4L3.B2	-0.214	1.985	-2,595	0.916	-1.344	V
TCSG.5R3.B2	-0.168	2.865	-3.740	1.353	-1.688	*
TCP.6R3.B2	-0.114	3.850	-4.030	2.107	-2.336	M
TCLAA7L7.B2	-0.114	2.620	-1.245	1.532	-1.760	K
TCLAD6L7.B2	0.328	2.105	-1.730	1.965	-1.308	M
TCLAB6L7.B2	-0.032	3.115	-2.890	2.389	-2.454	×
TCSG.B4R7.B2	-0.268	1.165	-3.280	2.098	-2.635	×
TCP.E6R7.E2	0.167	1.045	-1.515	2.203	-1.868	
TCSG.A5R7.B2	-0.069	2.885	-1.805	2.416	-2.554	
	☑ Select	All				
	Half Gap (si	gma)	6	_		
	Center Delta	(mm)	0.5	1	ool G	iUl
		Acqu	ire Move	Stop		

MD 2011 results

Outline

- CERN and the Large Hadron Collider
- LHC Collimation System
- Collimator Beam-Based Alignment
- Alignment Algorithms
- Software Implementation
- Modeling and Simulation of Beam Losses
- Simulation and Operational Results
- Future: BPM-based alignment
- Conclusions

- **Collimator data:** motor positions and LVDT data acquired by subscribing to Required Absolute Position and Measured Corner Positions parameters. Data published at 1 Hz.
- 1 Hz BLM data: Acquired from data concentrator at 1 Hz (1.3 s running sum).

- **Collimator data:** motor positions and LVDT data acquired by subscribing to Required Absolute Position and Measured Corner Positions parameters. Data published at 1 Hz.
- 1 Hz BLM data: Acquired from data concentrator at 1 Hz (1.3 s running sum).
- 12.5 Hz BLM data as of 2012 (82 ms running sum):

- **Collimator data:** motor positions and LVDT data acquired by subscribing to Required Absolute Position and Measured Corner Positions parameters. Data published at 1 Hz.
- 1 Hz BLM data: Acquired from data concentrator at 1 Hz (1.3 s running sum).

<i></i>																	
🙆 Collimator Status Dis	splay (HWG: LHC (COLLIMATORS)														E.	
File App launcher Res	et																
▼ RBA: glvalent																	
TCDD.IP2.B1.1.H ->	MDC PRS	TCDI.TI2.B1.1.P ->	MDC PRS	TCDI.TI2.B1.2.V ->	MDC PRS	TCDI.TI2.B1.3.H ->	MDC	PRS	TCDI.TI2.B1.4.H ->	MDC	PRS	TCDI.TI2.B1.5.V ->	MDC	PRS	TCDI.TI2.B1.6.H ->	MDC	PRS
TCDI.TI2.B1.7.V ->	MDC PRS	TCDI.TI8.B2.1.H ->	MDC PRS	TCDI.TI8.B2.2.V ->	MDC PRS	TCDI.TI8.B2.3.V ->	MDC	PRS	TCDI.TI8.B2.4.H ->	MDC	PRS	TCDI.TI8.B2.5.H ->	MDC	PRS	TCDI.TI8.B2.6.V ->	MDC	PRS
TCDQ.IP6.B1.1.H ->	MDC PRS	TCDQ.IP6.B2.1.H ->	MDC PRS	TCL.IP1.B1.1.H ->	MDC PRS	TCL.IP1.B2.1.H ->	MDC	PRS	TCL.IP5.B1.1.H ->	MDC	PRS	TCL.IP5.B2.1.H ->	MDC	PRS	TCLA.IP3.B1.1.V ->	MDC	PRS
TCLA.IP3.B1.2.H ->	MDC PRS	TCLA.IP3.B1.3.H ->	MDC PRS	TCLA.IP3.B1.4.H ->	MDC PRS	TCLA.IP3.B2.1.V ->	MDC	PRS	TCLA.IP3.B2.2.H ->	MDC	PRS	TCLA.IP3.B2.3.H ->	MDC	PRS	TCLA.IP3.B2.4.H ->	MDC	PRS
TCLA.IP7.B1.1.V ->	MDC PRS	TCLA.IP7.B1.2.H ->	MDC PRS	TCLA.IP7.B1.3.V ->	MDC PRS	TCLA.IP7.B1.4.H ->	MDC	PRS	TCLA.IP7.B1.5.H ->	MDC	PRS	TCLA.IP7.B2.1.V ->	MDC	PRS	TCLA.IP7.B2.2.H ->	MDC	PRS
TCLA.IP7.B2.3.V ->	MDC PRS	TCLA.IP7.B2.4.H ->	MDC PRS	TCLA.IP7.B2.5.H ->	MDC PRS	TCLLIP2.B1.1.V ->	MDC	PRS	TCLI.IP2.B1.2.V ->	MDC	PRS	TCLI.IP8.B2.1.V ->	MDC	PRS	TCLI.IP8.B2.2.V ->	MDC	PRS
TCP.IP3.B1.1.H ->	MDC PRS	TCP.IP3.B2.1.H ->	MDC PRS	TCP.IP7.B1.1.V ->	MDC PRS	TCP.IP7.B1.2.H ->	MDC	PRS	TCP.IP7.B1.3.S ->	MDC	PRS	TCP.IP7.B2.1.V ->	MDC	PRS	TCP.IP7.B2.2.H ->	MDC	PRS
TCP.IP7.B2.3.S ->	MDC PRS	TCSG.IP3.B1.1.H ->	MDC PRS	TCSG.IP3.B1.2.H ->	MDC PRS	TCSG.IP3.B1.3.H ->	MDC	PRS	TCSG.IP3.B1.4.H ->	MDC	PRS	TCSG.IP3.B2.1.H ->	MDC	PRS	TCSG.IP3.B2.2.H ->	MDC	PRS
TCSG.IP3.B2.3.H ->	MDC PRS	TCSG.IP3.B2.4.H ->	MDC	TCSG.IP6.B1.1.H ->	MDC PRS	TCSG.IP6.B2.1.H ->	MDC	PRS	TCSG.IP7.B1.1.S ->	MDC	PRS	TCSG.IP7.B1.10.S ->	MDC	PRS	TCSG.IP7.B1.11.H ->	MDC	PRS
TCSG.IP7.B1.2.S ->	MDC PRS	TCSG.IP7.B1.3.S ->	MDC	TCSG.IP7.B1.4.V ->	MDC PRS	TCSG.IP7.B1.5.H ->	MDC	PRS	TCSG.IP7.B1.6.S ->	MDC	PRS	TCSG.IP7.B1.7.S ->	MDC	PRS	TCSG.IP7.B1.8.S ->	MDC	PRS
TCSG.IP7.B1.9.S ->	MDC PRS	TCSG.IP7.B2.1.S ->	MDC PRS	TCSG.IP7.B2.10.S ->	MDC PRS	TCSG.IP7.B2.11.H ->	MDC	PRS	TCSG.IP7.B2.2.S ->	MDC	PRS	TCSG.IP7.B2.3.S ->	MDC	PRS	TCSG.IP7.B2.4.V ->	MDC	PRS
TCSG.IP7.B2.5.H ->	MDC PRS	TCSG.IP7.B2.6.S ->	MDC PRS	TCSG.IP7.B2.7.S ->	MDC PRS	TCSG.IP7.B2.8.S ->	MDC	PRS	TCSG.IP7.B2.9.S ->	MDC	PRS	TCT.IP1.B1.1.H ->	MDC	PRS	TCT.IP1.B1.2.V ->	MDC	PRS
TCT.IP1.B2.1.H ->	MDC PRS	TCT.IP1.B2.2.V ->	MDC PRS	TCT.IP2.B1.1.H ->	MDC PRS	TCT.IP2.B1.2.V ->	MDC	PRS	TCT.IP2.B2.1.H ->	MDC	PRS	TCT.IP2.B2.2.V ->	MDC	PRS	TCT.IP5.B1.1.H ->	MDC	PRS
TCT.IP5.B1.2.V ->	MDC PRS	TCT.IP5.B2.1.H ->	MDC PRS	TCT.IP5.B2.2.V ->	MDC PRS	TCT.IP8.B1.1.H ->	MDC	PRS	TCT.IP8.B1.2.V ->	MDC	PRS	TCT.IP8.B2.1.H ->	MDC	PRS	TCT.IP8.B2.2.V ->	MDC	PRS
TDI.IP2.B1.1.H ->	MDC PRS	TDI.IP8.B2.1.H ->	MDC PRS														
Console														25557555555555		00000000000	innecessassesses
16:14:00 - TCTH. 4R8.B2 16:14:00 - TCTVB. 4R8 16:14:00 - TDI. 4L2 16:14:00 - TDI. 4R8 16:14:00 - TDI. 4R8 16:14:00 - Successfully connected to 100 collimators!																	
16:13:59 - Ready.																	
1																	

Gianluca Valentino

Gianluca Valentino 32

Outline

- CERN and the Large Hadron Collider
- LHC Collimation System
- Collimator Beam-Based Alignment
- Alignment Algorithms
- Software Implementation
- Modeling and Simulation of Beam Losses
- Simulation and Operational Results
- Future: BPM-based alignment
- Conclusions

Modeling and Simulation of Beam Losses

Modeling and Simulation of Beam Losses

- Motivation: allow offline tests of the automatic setup application without requiring beam.
 - gain knowledge of beam loss dynamics useful for automatic alignment.

Modeling and Simulation of Beam Losses

- Motivation: allow offline tests of the automatic setup application without requiring beam.
 - gain knowledge of beam loss dynamics useful for automatic alignment.
- Loss spike consists of 3 components which have to be understood and modeled:

Steady-State BLM Signal

Steady-State BLM Signal

- Empirical model of the BLM steady-state as a function of jaw half gap in σ .
- Four alignment data sets: 450 GeV 2011, 3500 GeV 2011, 450 GeV 2012, 4000 GeV 2012.
- Hundreds of steady-state samples were extracted using a Java application.
- 1 sample = average of last 5 s of data from collimator BLMs when no collimators were moving in the previous 10 s.

Steady-State BLM Signal

- Empirical model of the BLM steady-state as a function of jaw half gap in σ .
- Four alignment data sets: 450 GeV 2011, 3500 GeV 2011, 450 GeV 2012, 4000 GeV 2012.
- Hundreds of steady-state samples were extracted using a Java application.
- 1 sample = average of last 5 s of data from collimator BLMs when no collimators were moving in the previous 10 s.
- Polynomial fits of the form $y = a + \frac{b}{a}$ e applied, e.g.:

Loss Spike and Decay: Beam Diffusion Measurements

Loss Spike and Decay: Beam Diffusion Measurements

- **Beam diffusion** is the process by which particles are driven from the beam core to the periphery (halo).
- An MD was conducted in on 22nd June 2012 to measure the rate of diffusion in the LHC.

Loss Spike and Decay: Beam Diffusion Measurements

- **Beam diffusion** is the process by which particles are driven from the beam core to the periphery (halo).
- An MD was conducted in on 22nd June 2012 to measure the rate of diffusion in the LHC.
- Collimator jaws used to scrape away the beam halo to observe the response in the BLMs:

Loss Spike and Decay: Beam Diffusion Measurements (2)

Phys. Rev. ST Accel. Beams, 16, 021003 (2013).

- Good agreement between diffusion coefficients measured from scraping and from beam emittance growth.
- Larger diffusion rates for colliding beams expected due to luminosity.
- Can be used to simulate spike and decay as a function of jaw position!

• 687 21-second samples were extracted, during periods in which only one collimator was moving.

• 687 21-second samples were extracted, during periods in which only one collimator was moving.

- RapidMiner was used to develop a NN model to predict the tactor as a function of the **distance** and jaw gap.
- A separate empirical model was developed for each collimator due to its unique location in the LHC.

• 687 21-second samples were extracted, during periods in which only one collimator was moving.

- RapidMiner was used to develop a NN model to predict the tactor as a function of the distance and jaw gap.
- A separate empirical model was developed for each collimator due to its unique location in the LHC.

• Policy: a combination of alignment algorithms.

- Policy: a combination of alignment algorithms.
- Policy 1: Sequential alignment algorithm

- Policy: a combination of alignment algorithms.
- **Policy 1:** Sequential alignment algorithm
- Policy 2: Parallel alignment algorithm
 - Sequential alignment algorithm

- Policy: a combination of alignment algorithms.
- **Policy 1:** Sequential alignment algorithm
- Policy 2: Parallel alignment algorithm
 - Sequential alignment algorithm
- Policy 3: Movement of all collimators with a half gap larger than 6 σ from parking to tighter settings based on BPM-interpolation
 - Parallel alignment algorithm
 - Sequential alignment algorithm

- Policy: a combination of alignment algorithms.
- **Policy 1:** Sequential alignment algorithm
- Policy 2: Parallel alignment algorithm
 - Sequential alignment algorithm
- Policy 3: Movement of all collimators with a half gap larger than 6 σ from parking to tighter settings based on BPM-interpolation
 - Parallel alignment algorithm
 - Sequential alignment algorithm
- **Policy 4:** Movement of all collimators with a half gap larger than 6 σ from parking to tighter settings based on BPM-interpolation
 - Parallel alignment algorithm utilizing knowledge of crosstalk factors
 - Sequential alignment algorithm

- Policy: a combination of alignment algorithms.
- Policy 1: Sequential alignment algorithm ————— 2010 operation
- Policy 2: Parallel alignment algorithm
 - Sequential alignment algorithm
- Policy 3: Movement of all collimators with a half gap larger than 6 σ from parking to tighter settings based on BPM-interpolation
 - Parallel alignment algorithm
 - Sequential alignment algorithm
- **Policy 4:** Movement of all collimators with a half gap larger than 6 σ from parking to tighter settings based on BPM-interpolation
 - Parallel alignment algorithm utilizing knowledge of crosstalk factors
 - Sequential alignment algorithm

- Policy: a combination of alignment algorithms.
- Policy 1: Sequential alignment algorithm ————— 2010 operation
- Policy 2: Parallel alignment algorithm

2011 onwards

- Sequential alignment algorithm
- Policy 3: Movement of all collimators with a half gap larger than 6 σ from parking to tighter settings based on BPM-interpolation
 - Parallel alignment algorithm
 - Sequential alignment algorithm
- **Policy 4:** Movement of all collimators with a half gap larger than 6 σ from parking to tighter settings based on BPM-interpolation
 - Parallel alignment algorithm utilizing knowledge of crosstalk factors
 - Sequential alignment algorithm

Outline

- CERN and the Large Hadron Collider
- LHC Collimation System
- Collimator Beam-Based Alignment
- Alignment Algorithms
- Software Implementation
- Modeling and Simulation of Beam Losses
- Simulation and Operational Results
- Future: BPM-based alignment
- Conclusions

- Simulations were performed for at beam energies of **450 GeV, 4 TeV and 7 TeV** as well as different collimator settings.
- For each policy and beam energy, the simulation was run for 50 times with random initial beam centres to obtain the final results (B1 aligned in parallel with B2).
- The collimators were divided into subgroups which are frequently aligned, e.g. IR7 or TCT collimators.

- Simulations were performed for at beam energies of **450 GeV, 4 TeV and 7 TeV** as well as different collimator settings.
- For each policy and beam energy, the simulation was run for 50 times with random initial beam centres to obtain the final results (B1 aligned in parallel with B2).
- The collimators were divided into subgroups which are frequently aligned, e.g. IR7 or TCT collimators.

- Simulations were performed for at beam energies of **450 GeV, 4 TeV and 7 TeV** as well as different collimator settings.
- For each policy and beam energy, the simulation was run for 50 times with random initial beam centres to obtain the final results (B1 aligned in parallel with B2).
- The collimators were divided into subgroups which are frequently aligned, e.g. IR7 or TCT collimators.

- Simulations were performed for at beam energies of **450 GeV**, **4 TeV** and **7 TeV** as well as different collimator settings.
- For each policy and beam energy, the simulation was run for 50 times with random initial beam centres to obtain the final results (B1 aligned in parallel with B2).
- The collimators were divided into subgroups which are frequently aligned, e.g. IR7 or TCT collimators.

- Simulations were performed for at beam energies of **450 GeV, 4 TeV and 7 TeV** as well as different collimator settings.
- For each policy and beam energy, the simulation was run for 50 times with random initial beam centres to obtain the final results (B1 aligned in parallel with B2).
- The collimators were divided into subgroups which are frequently aligned, e.g. IR7 or TCT collimators.

- Simulations were performed for at beam energies of **450 GeV, 4 TeV and 7 TeV** as well as different collimator settings.
- For each policy and beam energy, the simulation was run for 50 times with random initial beam centres to obtain the final results (B1 aligned in parallel with B2).
- The collimators were divided into subgroups which are frequently aligned, e.g. IR7 or TCT collimators.

• Policy 4: gain in time is larger when all collimators are moved simultaneously (Policy 3), even though there are more frequent interruptions.

BPM

• Total setup time depends on the beam time consumed, the number of beam dumps *d* and the Automation turnaround time:

$$T_{setup} = T_{beam} + d \times T_{turnaround}$$

$$T_{average} = \frac{T_{beam}}{C}$$

- No costly beam dumps due to high losses from 2011 onwards.
- Use of smaller jaw step size (better accuracy) made easier by automatic alignment.

BPM

• Total setup time depends on the beam time consumed, the number of beam dumps *d* and the Automation turnaround time:

$$T_{setup} = T_{beam} + d \times T_{turnaround}$$

$$T_{average} = \frac{T_{beam}}{C}$$

- No costly beam dumps due to high losses from 2011 onwards.
- Use of smaller jaw step size (better accuracy) made easier by automatic alignment.

• Total setup time depends on the beam time consumed, the number of beam dumps d and the Automation turnaround time:

$$T_{setup} = T_{beam} + d \times T_{turnaround}$$

$$T_{average} = \frac{T_{beam}}{C}$$

- No costly beam dumps due to high losses from 2011 onwards.
- Use of smaller jaw step size (better accuracy) made easier by automatic alignment.

• Total setup time depends on the beam time consumed, the number of beam dumps d and the Automation turnaround time:

$$T_{setup} = T_{beam} + d \times T_{turnaround}$$

$$T_{average} = \frac{T_{beam}}{C}$$

- No costly beam dumps due to high losses from 2011 onwards.
- Use of smaller jaw step size (better accuracy) made easier by automatic alignment.

Limitation from loss spikes + jaw movement:

 $(86 \times 2 \times 2 \times 15s) + (8 \text{ mm} / 5 \mu\text{m} / 8 \text{ Hz}) \approx 1.5 \text{ hours}$

Alignment Performance Overview

- Policy 4 is not included in the comparison as only simulation results exist.
- In practice, the alignment takes much longer due to:
 - unforeseen beam instabilities;
 - human checks;
 - momentum cut in IR3;
 - imperfect loss spikes.

- Policy 4 is not included in the comparison as only simulation results exist.
- In practice, the alignment takes much longer due to:
 - unforeseen beam instabilities;
 - human checks;
 - momentum cut in IR3;
 - imperfect loss spikes.

2.5 Time [s]

3.5

3

4.5

<u>x</u> 10⁴

2

1.5

0.5

H, V, S

Gianluca Valentino

50

_x 10⁴

LHC Collimation

CERN

Gianluca Valentino

LHC Collimation

Outline

- CERN and the Large Hadron Collider
- LHC Collimation System
- Collimator Beam-Based Alignment
- Alignment Algorithms
- Software Implementation
- Modeling and Simulation of Beam Losses
- Simulation and Operational Results
- Future: BPM-based alignment
- Conclusions

- As of 2015, new TCTs with in-built **Beam Position Monitors (BPMs)** will be installed.
- This will provide a direct measurement of the beam orbit at the TCT locations.
- Beam centre cannot be measured accurately at large gaps and offsets due to **BPM non-linearities**.
- A mock-up BPM-equipped collimator is currently installed in the SPS for beam tests.

Beam

• A successive approximation algorithm was developed to determine the beam centre.

 $|X_{bpm}| \leq X_{error}$

Beam

• A successive approximation algorithm was developed to determine the beam centre.

Beam

Beam

- Alignment trials were conducted with circulating beam at an energy of 270 GeV.
- One LHC-type bunch with an injection intensity of 1.2×10^{11} p was circulating in the SPS.

- Alignment trials were conducted with circulating beam at an energy of 270 GeV.
- One LHC-type bunch with an injection intensity of 1.2×10^{11} p was circulating in the SPS.

- Alignment trials were conducted with circulating beam at an energy of 270 GeV.
- One LHC-type bunch with an injection intensity of 1.2×10^{11} p was circulating in the SPS.

- Alignment trials were conducted with circulating beam at an energy of 270 GeV.
- One LHC-type bunch with an injection intensity of 1.2×10^{11} p was circulating in the SPS.
- The alignment time is strongly influenced by:
 - the time interval between each step;
 - the alignment accuracy required;
 - the **initial jaw gap** to a lesser degree (BPM non-linearities are proportional to the jaw gap).
- The shortest time achieved was ~20 s, a **factor 6 improvement** over the best time of ~120 s with the BLM-based technique.

- Alignment trials were conducted with circulating beam at an energy of 270 GeV.
- One LHC-type bunch with an injection intensity of 1.2×10^{11} p was circulating in the SPS.
- The alignment time is strongly influenced by:
 - the time interval between each step;
 - the alignment accuracy required;
 - the **initial jaw gap** to a lesser degree (BPM non-linearities are proportional to the jaw gap).
- The shortest time achieved was ~20 s, a **factor 6 improvement** over the best time of ~120 s with the BLM-based technique.
- BLM vs. BPM centres agree within 150 μm
 - BLM jaw step size in the SPS = 50 μ m
 - BPM button vs. jaw surface positioning tolerance = 50 μ m

• Main goal: elimination of all orbit-related settings errors at the TCTs and IR6 TCSGs!

- Main goal: elimination of all orbit-related settings errors at the TCTs and IR6 TCSGs!
- BPMs will **improve collimator operation** by providing:
 - online monitoring of beam centres
 - possibility of interlocks on orbit measurements (should always be 0 with centered jaws)
 - fast fill-to-fill TCT alignments, or as frequently as required

- Main goal: elimination of all orbit-related settings errors at the TCTs and IR6 TCSGs!
- BPMs will **improve collimator operation** by providing:
 - online monitoring of beam centres
 - possibility of interlocks on orbit measurements (should always be 0 with centered jaws)
 - fast fill-to-fill TCT alignments, or as frequently as required
- Gain of 8 cm in β^* reach \longrightarrow no more 50 μ m setup error (R. Bruce, MP Workshop 2013)

Considerations for BPM operation after LS1

- Main goal: elimination of all orbit-related settings errors at the TCTs and IR6 TCSGs!
- BPMs will **improve collimator operation** by providing:
 - online monitoring of beam centres
 - possibility of interlocks on orbit measurements (should always be 0 with centered jaws)
 - fast fill-to-fill TCT alignments, or as frequently as required
- Gain of 8 cm in β^* reach \longrightarrow no more 50 μ m setup error (R. Bruce, MP Workshop 2013)
- Better monitoring in IR6:
 - find out earlier on possible problems rather than waiting for the infrequent loss maps
 - can also be used for the SIS interlock of the TCDQ centering/retraction (J. Wenninger)

Considerations for BPM operation after LS1

- Main goal: elimination of all orbit-related settings errors at the TCTs and IR6 TCSGs!
- BPMs will **improve collimator operation** by providing:
 - online monitoring of beam centres
 - possibility of interlocks on orbit measurements (should always be 0 with centered jaws)
 - fast fill-to-fill TCT alignments, or as frequently as required
- Gain of 8 cm in β^* reach \longrightarrow no more 50 μ m setup error (R. Bruce, MP Workshop 2013)
- Better monitoring in IR6:
 - find out earlier on possible problems rather than waiting for the infrequent loss maps
 - can also be used for the SIS interlock of the TCDQ centering/retraction (J. Wenninger)
- **Commissioning with beam** will be required to ensure calibration of electronics for correction of noise and BPM non-linearities (gain with BPMs will not be immediate after LS1).

Considerations for BPM operation after LS1

- Main goal: elimination of all orbit-related settings errors at the TCTs and IR6 TCSGs!
- BPMs will **improve collimator operation** by providing:
 - online monitoring of beam centres
 - possibility of interlocks on orbit measurements (should always be 0 with centered jaws)
 - fast fill-to-fill TCT alignments, or as frequently as required
- Gain of 8 cm in β^* reach \longrightarrow no more 50 μ m setup error (R. Bruce, MP Workshop 2013)
- Better monitoring in IR6:
 - find out earlier on possible problems rather than waiting for the infrequent loss maps
 - can also be used for the SIS interlock of the TCDQ centering/retraction (J. Wenninger)
- **Commissioning with beam** will be required to ensure calibration of electronics for correction of noise and BPM non-linearities (gain with BPMs will not be immediate after LS1).
- Engineering specification to be drawn up in collaboration with BI team.

Outline

- CERN and the Large Hadron Collider
- LHC Collimation System
- Collimator Beam-Based Alignment
- Alignment Algorithms
- Software Implementation
- Modeling and Simulation of Beam Losses
- Simulation and Operational Results
- Future: BPM-based alignment
- Conclusions

- LHC collimation system cleaning efficiency is highly dependent on correct collimator positions.
- The jaw positions are determined from beam-based alignment (~ 30 hours when manual).

- LHC collimation system cleaning efficiency is highly dependent on correct collimator positions.
- The jaw positions are determined from beam-based alignment (~ 30 hours when manual).
- The BLM signals are used in a **feedback loop to automatically stop the jaw** once the losses exceed a pre-defined threshold, an indication that the jaw has possibly touched the beam halo.
- SVM-based loss spike classification ensures that the automatic alignment is reliable, while the BPM-interpolated orbit allows for a coarse alignment of the jaws around the beam center with a safety margin to gain time.

- LHC collimation system cleaning efficiency is highly dependent on correct collimator positions.
- The jaw positions are determined from beam-based alignment (~ 30 hours when manual).
- The BLM signals are used in a **feedback loop to automatically stop the jaw** once the losses exceed a pre-defined threshold, an indication that the jaw has possibly touched the beam halo.
- SVM-based loss spike classification ensures that the automatic alignment is reliable, while the BPM-interpolated orbit allows for a coarse alignment of the jaws around the beam center with a safety margin to gain time.
- Automatic alignment algorithms have so far reduced the total setup time from 28 hours to 4 hours (factor 7 improvement) and eliminated the possibility of human error.

- LHC collimation system cleaning efficiency is highly dependent on correct collimator positions.
- The jaw positions are determined from beam-based alignment (~ 30 hours when manual).
- The BLM signals are used in a **feedback loop to automatically stop the jaw** once the losses exceed a pre-defined threshold, an indication that the jaw has possibly touched the beam halo.
- SVM-based loss spike classification ensures that the automatic alignment is reliable, while the BPM-interpolated orbit allows for a coarse alignment of the jaws around the beam center with a safety margin to gain time.
- Automatic alignment algorithms have so far reduced the total setup time from 28 hours to 4 hours (factor 7 improvement) and eliminated the possibility of human error.
- A prototype algorithm for **BPM-based alignment** was tested with beam in the SPS.

- LHC collimation system cleaning efficiency is highly dependent on correct collimator positions.
- The jaw positions are determined from beam-based alignment (~ 30 hours when manual).
- The BLM signals are used in a **feedback loop to automatically stop the jaw** once the losses exceed a pre-defined threshold, an indication that the jaw has possibly touched the beam halo.
- SVM-based loss spike classification ensures that the automatic alignment is reliable, while the BPM-interpolated orbit allows for a coarse alignment of the jaws around the beam center with a safety margin to gain time.
- Automatic alignment algorithms have so far reduced the total setup time from 28 hours to 4 hours (factor 7 improvement) and eliminated the possibility of human error.
- A prototype algorithm for **BPM-based alignment** was tested with beam in the SPS.
- The algorithm logic will be moved from the application to the FESA level, thereby reducing the network and processing load at the top level.

- LHC collimation system cleaning efficiency is highly dependent on correct collimator positions.
- The jaw positions are determined from beam-based alignment (~ 30 hours when manual).
- The BLM signals are used in a **feedback loop to automatically stop the jaw** once the losses exceed a pre-defined threshold, an indication that the jaw has possibly touched the beam halo.
- SVM-based loss spike classification ensures that the automatic alignment is reliable, while the BPM-interpolated orbit allows for a coarse alignment of the jaws around the beam center with a safety margin to gain time.
- Automatic alignment algorithms have so far reduced the total setup time from 28 hours to 4 hours (factor 7 improvement) and eliminated the possibility of human error.
- A prototype algorithm for **BPM-based alignment** was tested with beam in the SPS.
- The algorithm logic will be moved from the application to the FESA level, thereby reducing the network and processing load at the top level.
- A new FESA-based software architecture for the embedded collimator BPMs will be defined and implemented during LS1.

Acknowledgements

- Research funded by EuCARD ColMat WP8.
- PhD supervisors: Dr. Ralph Assmann (CERN) and Dr. Ing. Nicholas Sammut (UoM).
- **Present + Past collimation team:** Roderik Bruce, Florian Burkart, Marija Cauchi, Daniel Deboy, Luisella Lari, Aurelien Marsili, Daniele Mirarchi, Elena Quaranta, Stefano Redaelli, Adriana Rossi, Belen Salvachua, Daniel Wollmann.
- Colleagues in BE-BI: Marek Gasior, Stephen Jackson, Andriy Nosych, Christos Zamantzas.
- Colleagues in BE-CO: Vito Baggiolini, Alastair Bland.
- Colleagues in EN-STI: Alessandro Masi.
- Giulio Stancari, Fermi National Accelerator Laboratory.
- All LHC + SPS EiCs and operators.

Gianluca Valentino 61

RESERVE SLIDES

Collimator Status and Positions Display

BLM-based alignment software

64

📤 Automatic Setup	Tool									_ D ×	
■ Horizontal ■ Vertical ■ Skew											
<u> </u>											
■ B1 ■ B2 🗹 Both Beams											
□ IP1 □ IP2 □ IP3 □ IP5 □ IP6 □ IP7 □ IP8 ☑ All IPs											
☐ TCP ☐ TCSG ☐ TCLA ☐ TCDQ ☐ Inj. Prot. ☐ TCT ☑ All Types											
Select All											
TCL.5L1.B2	TCL.5L5.B2	TCL.5R1.B1	TCL.5R5.B1	TCLA.6L3.B2	TCLA.6R3.B1	TCLA.7L3.B2	TCLA.7R3.B1	TCLA.A5L3.B2	TCLA.A5R3.B1	TCLA.A6L7.B2	
TCLA.A6R7.B1	TCLA.A7L7.B2	TCLA.A7R7.B1	TCLA.B5L3.B2	TCLA.B5R3.B1	TCLA.B6L7.B2	TCLA.B6R7.B1	TCLA.C6L7.B2	TCLA.C6R7.B1	TCLA.D6L7.B2	TCLA.D6R7.B1	
TCLIA.4L8	TCLIA.4R2	TCLIB.6L8.B2	TCLIB.6R2.B1	■ TCP.6L3.B1	■ TCP.6R3.B2	TCP.B6L7.B1	TCP.B6R7.B2	TCP.C6L7.B1	TCP.C6R7.B2	TCP.D6L7.B1	
<u> </u>											
☐ TCP.D6R7.B2	TCSG.4L3.B2	TCSG.4L6.B2	TCSG.4R3.B1	TCSG.4R6.B1	TCSG.5L3.B1	TCSG.5R3.B2	TCSG.6L7.B2	TCSG.6R7.B1	TCSG.A4L7.B1	TCSG.A4L7.B2	
TCP.DUR7.B2	TC30.4E3.B2	TC30.4L0.B2	1C30.4KJ.B1	TC30.4N0.BT	TCSG.3E3.B1	TCS0.3RJ.B2	TC30.0L7.B2	TCS0.0K7.B1	TCSG.A4L7.B1	TC30.A4L7.B2	
_			_	_	_			_	_	_	
TCSG.A4R7.B1	TCSG.A4R7.B2	TCSG.A5L3.B2	TCSG.A5L7.B1	TCSG.A5R3.B1	TCSG.A5R7.B2	TCSG.A6L7.B1	TCSG.A6R7.B2	TCSG.B4L7.B1	TCSG.B4R7.B2	TCSG.B5L3.B2	
TCSG.B5L7.B1	TCSG.B5L7.B2	TCSG.B5R3.B1	TCSG.B5R7.B1	TCSG.B5R7.B2	TCSG.D4L7.B1	TCSG.D4R7.B2	TCSG.D5L7.B2	TCSG.D5R7.B1	TCSG.E5L7.B2	TCSG.E5R7.B1	
TCTH.4L1.B1	TCTH.4L2.B1	TCTH.4L5.B1	TCTH.4L8.B1	TCTH.4R1.B2	TCTH.4R2.B2	TCTH.4R5.B2	TCTH.4R8.B2	☐ TCTVA.4L1.B1	TCTVA.4L2.B1	☐ TCTVA.4L5.B1	
TOTAL LIBT	TCTTL4L2.DT	TCTTL4E3.DT	TCTTL4E0.DT	TOTTLARTIDE	TCTTI.4TV2.D2	TCTTL4R3.D2	TCTTL4NO.D2	ICIVA.4E1.DI	TCTVM.4LZ.DT	TOTVA.4E3.DT	
TCTVA.4R1.B2	TCTVA.4R2.B2	TCTVA.4R5.B2	☐ TCTVB.4L8	TCTVB.4R8	TDI.4L2	TDI.4R8					
					Next Cance						

Collimator selector GUI allows the user to include any combination of collimators in the alignment sequence

BLM-based alignment software

BLM-based alignment software

Collimator	Setup Sheet -	Beam 1 (/user/slo	ps/data/LHC_D	ATA/OP_DATA/LH	ICCollimators/Se	tups/Setup_201	L3-02-01_1/Collin	mator_Setup_Sh	eet_4000GeV-colli	sions_2013-02-0	1 19-14-16 B1	ONGOING.txt)	_
File Edit Options	s								_				
Geometric Emittance: 8.21E-10													
Geometric Emittance: 8.21E-10													
Setup N Sigma: 4.5													
DMC Momentum Deviations 2 06E 4													
RMS Momentum Deviation: 3.06E-4 Number Status Collimator Name Angle (deg) JAW L Calib (mm) JAW R Calib (mm) LVDT gap Gap Offset (mm) Half Gap Meas (mm) Eff sigma in coll plane JAW L Setting (mm) JAW R Setting (mm) Target HALF GAP sigma Pos													
Number Horizontal	Status	Collimator Name	Angle (deg)	JAW L Calib (mm)	JAW R Calib (mm)	LVDT gap	Gap Offset (mm)	Half Gap Meas (mm	n) Eff sigma in coll plane	JAW L Setting (mm)	JAW R Setting (mm)	Target HALF GAP sig	ma Pos
9	True	TCP.C6L7.B1	0.00	1.020	-1.525	2.474	-0.252	1.272	n/a	n/a	n/a	3.62	197:
10	True	TCTH.4L5.B1	0.00	-1.895	-7.975	6.067	-4.935	3.040	0.942	4.482	-14.352	10.00	131:
11	True	TCP.C6L7.B1	0.00	0.895	-1.425	2.249	-0.265	1.160	n/a	n/a	n/a	3.30	197:
36	True	TCP.C6L7.B1	0.00	0.895	-1.425	2.250	-0.265	1.160	0.352	0.895	-1.425	3.30	197:
37	True	TCTH.4L2.B1	0.00	2.950	-2.275	5.191	0.338	2.612	0.791	8.249	-7.574	10.00	321
38	True	TCP.C6L7.B1	0.00	0.855	-1.405	2.190	-0.275	1.130	n/a	n/a	n/a	3.21	197:
42	True	TCP.C6L7.B1	0.00	0.855	-1.405	2.189	-0.275	1.130	0.352	0.855	-1.405	3.21	197:
43	True	TCTH.4L1.B1	0.00	3.500	-2.115	5.569	0.692	2.808	0.942	10.110	-8.725	10.00	265
44	True	TCP.C6L7.B1	0.00	0.815	-1.365	2.109	-0.275	1.090	n/a	n/a	n/a	3.10	197:
45	True	TCP.C6L7.B1	0.00	0.815	-1.365	2.109	-0.275	1.090	0.352	0.815	-1.365	3.10	197:
46	True	TCTH.4L8.B1	0.00	7.680	4.260	3.400	5.970	1.710	0.551	12.579	-0.639	12.000	231:
47	True	TCP.C6L7.B1	0.00	0.785	-1.325	2.038	-0.270	1.055	n/a	-0.270	-0.270	3.00	197:
Vertical													
0	True	TCP.D6L7.B1	90.01	1.035	-0.585	1.596	0.225	0.810	n/a	n/a	n/a	3.20	197
1	True	TCTVA 4L5.B1	90.01	2.505	-1.355	3.852	0.575	1.930	0.600	6.572	-5.422	10.00	131
2	True	TCP.D6L7.B1	90.01	0.980	-0.540	1.496	0.220	0.760	n/a	n/a	n/a	3.00	197
12	True	TCP.D6L7.B1	90.01	0.980	-0.540	1.487	0.220	0.760	n/a	n/a	n/a	3.00	197
13	True	TCTVA 4L2.B1	90.01	0.620	-4.760	5.343	-2.070	2.690	0.840	6.332	-10.472	10.00	325
14	True	TCP.D6L7.B1	90.01	0.965	-0.530	1.464	0.217	0.748	n/a	n/a	n/a	2.95	197
18	True	TCP.D6L7.B1	90.01	0.965	-0.530	1.464	0.217	0.748	n/a	n/a	n/a	2.95	197
19	True	TCTVA.4L1.B1	90.01	4.460	0.450	3.977	2.455	2.005	0.600	8.452	-3.542	10.00	265
20	True	TCP.D6L7.B1	90.01	0.955	-0.520	1.445	0.217	0.738	n/a	n/a	n/a	2.91	197
21	True	TCP.D6L7.B1	90.01	0.955	-0.520	1.445	0.217	0.738	n/a	n/a	n/a	2.91	197
22	True	TCTVB.4L8	90.01	2.025	-1.895	3.883	0.065	1.960	0.650	7.862	-7.732	12.000	232
23	True	TCP.D6L7.B1	90.01	0.940	-0.500	1.405	0.220	0.720	n/a	0.220	0.220	2.84	197
Skew													▼
4													

Collimator setup sheet after a TCT alignment

Gianluca Valentino

TCT collimator alignment results

