

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Empirical study of the effect of cathode voids on breakdown rate

Anders Korsbäck 10.9.2013

Background

Simulation work (Aarne Pohjonen, Stefan Parviainen, image on the right) suggests that voids under the surface of the cathode contribute to breakdown rate: The combination of a void and an electric field cause protrusion growth above the void We want to test this result by manufacturing void-filled electrodes and measuring

their breakdown rate

FIG. 3: a) and b) show the top view and a slice of the system at time t = 114.0 ps when stacking faults have formed. c) and d) show the same, at time t = 130.1 ps when stacking faults are clearly visible. Evaporated atoms are not shown in a) and c) for clarity.

2

Sample manufacturing

12 copper discs (diameter 1.7 cm) were manufactured and preprocessed at CERN, then sent to Helsinki

Overall (original) plan:

- Inject He⁺ into samples using ion implantation accelerator
- Anneal samples to get the He to nucleate into larger bubbles (voids), and to let it out

 Confirm successful manufacture through positron annihilation spectroscopy

Irradiation Relationship between implantation depth and ion energy was studied with SRIM simulation of He ion implantation into

Cu sample, ion energy of 30 keV

- Irradiation of samples was conducted using ion energy of 30 keV, dose chosen to yield 5 atom-% He at most common stopping range
- Each of the 12 samples had half of it masked with aluminium tape to provide a control sample
- Possible impurity issue caused by evaporating glue

SRIM:

Status quo

- After implantation, two samples were sent to the positron spectroscope at Aalto University
- Result: Void size decreases monotonously with depth, close to the surface (≤ 25 nm) lowest estimate of void size 8-10 missing atoms
- Question: To anneal or not anneal? Consensus so far to anneal one sample, do breakdown measurement for the annealed sample and one non-annealed sample; if either gives clearly better results, do that to every sample

Proposed measurement

Use DC Spark System II. Since voids are likely consumed in the process, little point in going for high rep-rate. Instead, make every spot and every breakdown count

Do a field emission measurement sweep at first, see if different β between irradiated and pure half

At each spot, ramp up voltage until breakdown happens, collect statistics on breakdown voltage

Use into-contact-at-one-spot method for calibrating gap distance control

Anders Korsbäck, University of Helsinki, Department of Materials Physics