ArcPIC2D update: Arc spreading through flat emission

Kyrre N. Sjøbæk 24/9/2013

Outline

- Bugfix in flat emission
- Simulations:
 - Simulation #1
 - Simulation #2 Convergence check of #1
 - Simulation #3 Nominal voltage (pegged)
 - Simulation #4 Nominal voltage (peg) & beta_flat = 1.0
- New plans
- Conclusions

Simulations

- Only a few have so far been made with the fixed code (they take a while to run)
- All simulations with gapsize 6 μm (somewhat random choice)
- All simulations with the new emission model
 - Neutral evaporation from flat surface on flat surface (not center)
 - Flat emission starting at Remission_theor, not Remission
 - Geometrical interpretation?
 - Fractional timestep injection switched on

Simulation #1

- Name: test_currdens
- U = 5800 V
- Z = 6 µm
- E = 966 MV/m
- 0.5 pF local capacitator voltage source
- Beta = 35
- Beta_flat = 2
- Remission = 0.564189 μ m
- Thresh_heatspike = 1e25 cm⁻² s⁻¹
- Y_heatspike = 1
- No melting or erosion of tip
- SEY = 0.5
- dz = 0.1 µm
- Dt = 1.77 fs
- Nsp = 21.3

Simulation #1: Particle- and particle density plots

- Phases visible:
 - Emission
 - Ignition
 - Spreading
- Also see powerful oscillations which some ions "surf"
 - Electrostatic oscillations
 - May be a numerical instability...

Simulation #1: Potential and field plots

Simulation #1: Particle impacts

 10^{4}

 10^{3}

 10^{1}

articles / bin

Simulation #1: Surface current density

- See clearly that the arc is expanding
- Cathode: "Halo" of electrons hitting the surface
 - Speculation: Worms?

 10^{7}

 10^{6}

 10^{5}

 10^{3}

 10^{2}

[A/cm²

Simulation #1: Summary

- Sheath now ignites flat surface
- Stable simulation plasma spreading, not getting superdense
- Quasineutral and conducting plasma expands to fill volume
- Complete ionization of central part³
- Rapid rise in current
- Capacitator voltage depleting
- Concentration of potential in remaining vacuum
 - Very high field here!
- Powerful oscillations

Simulation #2 – Convergence check of #1

Simulation #2 – potential & density

Simulation #2 – current density

- Not yet filling gap
- Larger "electron halo"
- Slower growth
- Broadly similar to #1

Simulation #2: Comparing to #1

- Broadly similar to #1
- Slower current rise
- Less "pulsing"
- Probably better converged
- Gap voltage and field ^{*} may affect needed numerical parameters

Simulation #3: Nominal voltage (pegged)

- Name: test_currDens_normVoltage
- Same physics & simulation setup as #1
- Exception:
 - U = 1740 V
 - E = 290 MV/m
 - FixedVoltage circuit (no capacitator)

Simulation #3 – potential & density

Simulation #3 – current density

Simulation #3 – summary

- Much slower rise than the high voltage runs
- Anode voltage pegged
- More neutrals produced
- Quite turbulent plasma

Simulation #4 – Nominal voltage (pegged) & beta_flat = 1.0

- Name: test_currDens_normVoltage_bf1.0
- Same setup as #3
- Exception: beta_flat = 1.0
- This leads to much slower runaway

Simulation #4 – potential & density

Note that plasma here sits at much higher potential!

Simulation #4: Particle impacts

Simulation #4 – summary

- Much lower total currents
- Much more neutrals
- Much higher sheath voltage
 - Higher impactor energy
 - Distribution still peaking at 50 V
 - Average yield 0.7

New plans – short term (paper)

AI TERNATIVE.

This + field emission

- Boundary conditions: MeVarc 5. November – 6¹/₂ weeks
 - Must finish most simulations in a few weeks
 - Then finish paper
- I'm going to Oslo to teach this week
- Simulations to be done:
 - Ignition parameters
 - Field / beta_tip / tip area
 - Neutral density / evap ratio
 - Injection area
 - Spreading parameters
 - Field / beta_flat
 - Heatspike / SEX parameters
 - Rbound

New plans – longer term

- Full arc cycle simulation now appears possible
- Should implement Shockley-Ramo current calculation to reduce current noise
 - Especially if using series resistor
 - Loop over all charged particles
- Energy deposit in material & temperature
 - Could be done off-line (in post-analysis)
- Properly study effects of external circuit
 - Energy stored, energy flow
- Higher charge states, recombination, field ionization
- Binary output format, restore the restart functionality

Conclusions

- Fixed major bug in flat emission
- Ignition of flat surface now works
- See differences in runs with different fields, beta_flat etc.
- Need to understand convergence
 - Especially plasma oscillations