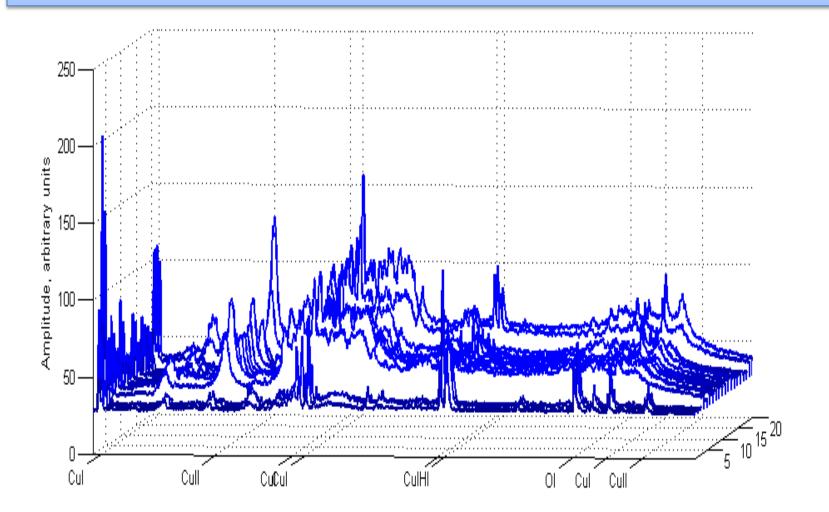
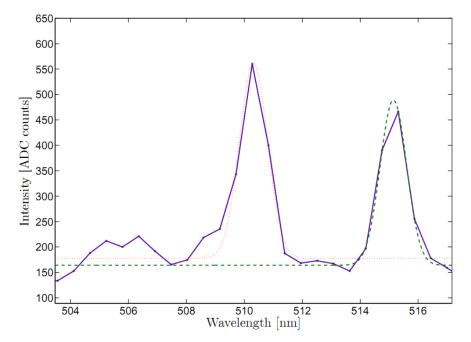

Optical spectroscopy of breakdowns


08-10-2013 Profatilova Iaroslava, Breakdown meeting

Ability of DC-breakdowns optical spectroscopy

- 1. Qualitative analysis (composition and impurities).
- 2. Plasma diagnostics.



Diagnostics of plasma parameters

For plasma in LTE we could use a two-line methods for calculate:

- \rightarrow Electron temperature T_e ;
- \rightarrow electron density n_e ;
- \rightarrow plasma conductivity σ_{dc} .

For Plasma in LTE:

- Maxwell Distribution:
- Boltzmann Distribution:
- The Saha's Ionization Equation:

$$d n_{e} = 4\pi n_{e} \left(\frac{m}{2\pi kT_{e}}\right)^{\frac{3}{2}} e^{-\frac{mv_{e}^{2}}{2kT_{e}}} v_{e}^{2} d v_{e}$$
$$n_{i} = n_{0} g_{i} A e^{-\frac{E_{i}}{kT}}$$

$$\frac{n_e^2}{n_g - n_e} = A' T_e^{\frac{3}{2}} e^{-\frac{E_i}{kT_e}}$$

There is equilibrium in a weak radiation field, where T from the Maxwell distribution is equal to the temperature T from Saha ionization equation. This is the so-called plasma in local thermodynamic equilibrium (LTE)

Boltzmann plot method for T

For plasma in LTE, the energy level populations of the species are given by the Boltzmann distribution law:

$$ln\left(\frac{I\lambda}{gA}\right) = -\frac{E_u}{k_BT} + const. = -aE_u + b$$
$$\frac{I_a}{I_b} = \frac{g_a A_a \lambda_b}{g_b A_b \lambda_a} \exp\left[-\left(\frac{E_a - E_b}{kT_e}\right)\right]$$
$$T_e = -\left(\frac{E_a - E_b}{k}\right) \left[\ln\frac{I_a g_b A_b \lambda_a}{I_b g_a A_a \lambda_b}\right]^{-1}$$

For each line, the wavelength λ , the intensity I, the oscillator's strength f, the statistical weight of the lower level g and the energy of the upper level Eu have each to be measured or be obtained from literature.

Calculation T

	Wavelength (nm)	Upper level energy (eV)	Lower level energy (eV)	Upper level degeneracy	Transition probability,s^(-1)
Cul	465,11	7,74	5,072	8	3,80E+07
Cul	510,55	3,817	1,389	4	2,00E+06
Cul	515,32	6,191	3,786	4	6,00E+07
Cul	521,82	6,192	3,817	6	7,50E+07
Cul	578,21	3,786	1,642	2	1,65E+07
Cull	268,93	13,392	8,783	7	4,10E+07
Cull	271,35	13,432	8,864	5	6,80E+07

 $T_1 (510.55; 515, 32) = 7624 K$ $T_2 (510.55; 521.82) = 7798 K$ $T_3 (521.85; 578, 21) = 12013 K$

Saha-Boltzmann equation method for ne

 The electron density using atom and ion spectral lines emitted from the plasma is determined from the Saha-Boltzmann equation as:

$$n_{\rm e} = \frac{I_Z^*}{I_{Z+1}^*} 6.04 \times 10^{21} (T)^{3/2} \\ \times \exp[(-E_{k,Z+1} + E_{k,Z} - \chi_Z)/k_{\rm B}T] \ {\rm cm}^{-3}$$

• where $I_Z^* = I_Z \lambda_{ki,Z} / g_{k,Z} A_{ki,Z}$ and χ_Z is the ionization energy of the species in the ionization stage Z.

Plasma conductivity

• RF plasma conductivity

$$\sigma_p = \frac{e^2 n_e}{m(\nu_m + j\omega)}$$

• DC plasma conductivity ($\omega \ll \nu_m$)

$$\sigma_{\rm dc} = \frac{e^2 n_e}{m \nu_m}$$

Thermal Desorption Spectroscopy at IAP NASU

The sample was heated at 300°C for 10 minutes for hydrogen removing from surface. Extraction of hydrogen from the sample was held at 1000°C for 10 minutes. The percentage of hydrogen atoms in the copper samples was determined by chromatograph.

	The number of sample	Sample origin	The number of hydrogen atoms in copper, %	
	Nº 1	standard electrochemical	4·10 ⁻⁵	
СЭАМИХРОМ-1		copper, IAP NASU		
	Nº 2	standard electrochemical	3.4·10 ⁻⁵	
øselmi		copper, IAP NASU	3.4 10	
	Nº 3	only etching, CERN	5.7·10 ⁻⁵	
	Nº 4	brazing coupler, CERN	2.1·10⁻⁴ 10	