Nuclear structure studies – Reactions

In-ring reactions

- Gas-jet target + array UVH detectors: Technical challenge!
- Good spatial resolution required for the reaction vertex:
 - In transverse directions: **Cooling necessary**
 - In beam direction: ??? Possible with the gas target??
 [however this is not critical for large angles which are usually the most important, i.e. 0 deg c.m.]
- Cooling sets limits on the half lives: Short nuclear half lives not feasible → interesting exotic light nuclei are not really accessible
 Medium-mass and heavy nuclei potentially interesting (Physics cases are presented in the TSR paper)

Nuclear structure studies – Reactions

In-ring reactions (cont'd)

Luminosity – how does it compare to "typical" external-target setup?

• Ratio determined by:

(ratio target thickness) x (revolution frequency) x (lifetime)

About the lifetimes:
 Scheme is injection-cooling-measurement
 Injection-cooling takes 1 to few seconds
 → we cannot measure for much longer otherwise we lose too much
 primary beam
 → no need to achieve lifetimes much larger than 1 to few seconds

 Frequency and targets: At 10 MeV/u: revolution frequency ≈ 8x10⁵ Hz → ratio of target thickness should not be smaller than 10⁻⁶ However such large gas-jet thickness (if achievable!) induces too high beam losses (continues on following slide)

Nuclear structure studies – Reactions

Table 1: Parameters of beams circulating in the TSR. See text for details.							
Ion	Nuclear	Energy	Cooling	Beam	H_2 target	Beam	Eff. target
	lifetime	(MeV/u)	time	lifetime in	$(atoms/cm^2)$	lifetime	thickness
				residual gas		in target	$(\mu g/cm^2)$
$^{7}\mathrm{Be}~3^{+}$	(53 d)	10	$2.3 \ s$	$370 \mathrm{\ s}$			
$^{18}F 9^+$	100 m	10	$0.7 \ { m s}$	$280 \mathrm{s}$	$1 imes 10^{14}$	236 s	31000
26m Al 13 ⁺	$6.3 \mathrm{s}$	10	$0.5 \ s$	$137 \mathrm{\ s}$	$5 imes 10^{14}$	23 s	4200
${}^{52}Ca \ 20^+$	$4.6 \mathrm{s}$	10	$0.4 \mathrm{\ s}$	58 s	$5 imes 10^{14}$	9.6 s	3000
⁷⁰ Ni 28 ⁺	$6.0 \mathrm{~s}$	10	$0.25 \ s$	30 s	$2 imes 10^{14}$	12 s	1600
⁷⁰ Ni 25 ⁺	$6.0 \mathrm{~s}$	10	$0.3 \mathrm{~s}$	26 s	2×10^{13}	$2.1 \mathrm{~s}$	60
$^{132}Sn \ 30^+$	$40 \mathrm{s}$	4	$0.4 \mathrm{~s}$	$1.5 \mathrm{s}$	1×10^{12}	$1.4 \mathrm{~s}$	1.2
$^{132}Sn \ 45^+$	$40 \mathrm{s}$	4	$0.2 \mathrm{~s}$	$1.4 \mathrm{s}$	$5 imes 10^{12}$	$1.6 \mathrm{\ s}$	7
$^{132}Sn \ 39^+$	$40 \mathrm{s}$	10	$0.25 \mathrm{~s}$	$7.4 \mathrm{s}$	2×10^{12}	$3.6 \mathrm{s}$	9.5
$^{132}Sn \ 45^+$	$40 \mathrm{s}$	10	$0.2 \mathrm{~s}$	$10 \mathrm{s}$	$5 imes 10^{13}$	$1.3 \mathrm{~s}$	90
186 Pb 46^{+}	$4.8 \mathrm{\ s}$	10	$0.25 \ s$	$4 \mathrm{s}$	2×10^{12}	$1.5 \mathrm{~s}$	4
$^{186}{\rm Pb}~64^+$	4.8 s	10	$0.13 \mathrm{~s}$	$5 \mathrm{s}$	$1 imes 10^{13}$	$1.7 \mathrm{~s}$	20

This "effective thickness" is essentially limited by the beam survival for charge-exchange in the gas target

Only good if the ions are fully stripped

However this cannot be achieved even with stripping at 10 MeV/u (equilibrium charge states are lower)

Maybe a gas separator needed before injection?

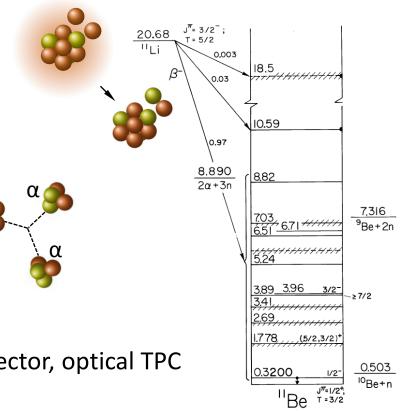
Nuclear structure studies – Reactions

Conclusions (to be discussed)

- IF a much better energy resolution can be achieved for in-ring reactions with respect to external particle-gamma setup (to be demonstrated) THEN there are cases where in-ring reactions can be of interest despite the reduce luminosity:
 - overcome high density of states in some nuclei
 - study of isomers (no gamma's)
- Otherwise, higher charge states are necessary: Consider a gas separator needed before injection?

Nuclear structure studies – Decay

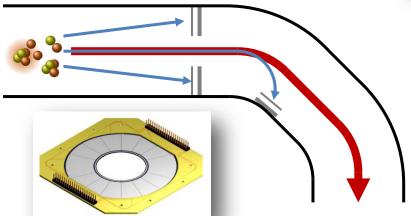
We are interested here in decay towards the continuum followed by the breakup of the daughter in two (or more) charged fragments

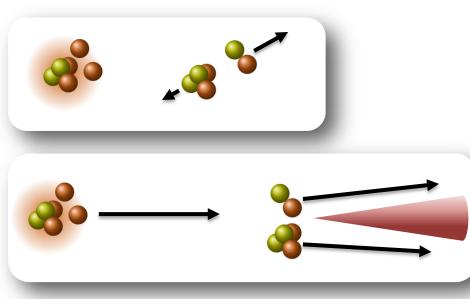

One needs accurate measurements of

- Branching ratios (often small!)
 ⇒ channel identification
 - \Rightarrow efficiency
- Energy emitted particles ⇒ low thresholds
 - \Rightarrow resolution
- Spatial correlations

Various methods:

Riccardo Raabe (IKS, KU Leuven)


• External source, implantation in a Si detector, optical TPC with advantages and disadvantages



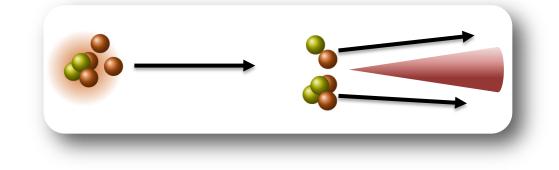
Nuclear structure studies – Decay

How can the TSR help? With a very low detection threshold!

- Decay at rest:
 Only energy of the decay is available
- Decay in flight:
 Use the momentum of the beam
 Emission in a narrow cone

 In the ring: Detection in annular arrays or after a bend Identification through Δ*E*-*E*

Nuclear structure studies – Decay


Cases of interest

 6 He (β) \rightarrow 4 He+d

⁸He (β) \rightarrow ⁶He+d

¹¹Be (β) \rightarrow ¹⁰Be+p

¹⁶N (β) \rightarrow ¹²C+ α

- The emission cones are large a few percent (transverse/longitudinal) in the worst cases
- 5 MeV/nucleon actually better
- Problem 1: measure energy very accurately (few keV at few MeV!!)
 AND/OR measure energy and angles → good beam definition → cooling
- Problem 2: coincidence detection preferable (particle ID affects resolution!)
 → probably very low efficiency

