

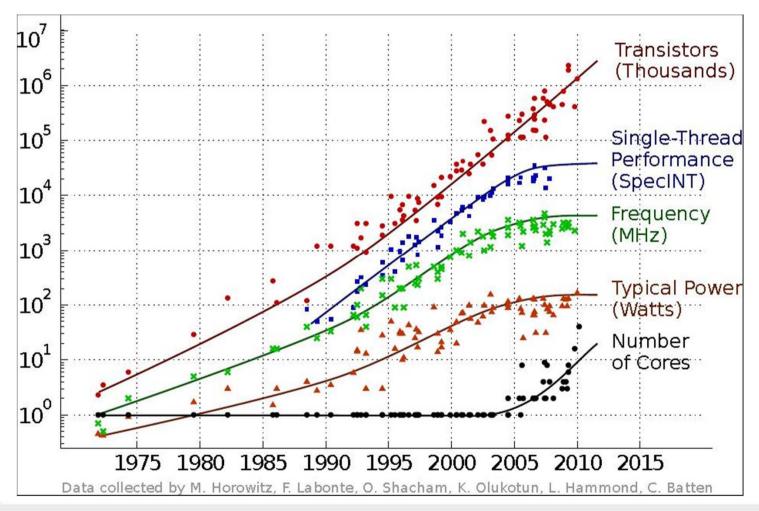
High Performance Embedded Computing on the MPPA[®] Single Chip Manycore Processor

CERN Seminar

Benoît Dupont de Dinechin benoit.dinechin@kalray.eu

AGILE

www.kalray.eu



Kalray Key facts

- Creation : 2008 located in Paris, Grenoble (France) & Tokyo (Japan)
- Kalray people: 55+
- Joint laboratory with CEA engineers: 30
- Run by Joël Monnier, former VP STMicroelectronics
- Multi-Purpose Processing Array technology MPPA[®]
- Targeting the industrial and embedded computing market
- First product released Q4 2012, in 28 nm CMOS TSMC technology
- Independent technology including core VLIW architecture and software tools, without any dependency on third party supplier
- Portfolio of 35 patents and 64 in progress

The End of Dennard MOSFET Scaling Theory

After 2005 (90nm), frequency stagnates and power per area increases

C KALRAY

Manycore Challenges on Next Technology Nodes

- Dark Silicon Projection (Esmaeilzadeh et al. CACM 2013)
 - "At 8nm, over 50% of the chip will be dark and cannot be utilized"
 - Based on Device x Core x Multicore models
 - Multicore model assumes x86 CPU or GPU architecture
- Dally on "Future Challenges of Large-Scale Computing" (ISC 2013)
 - Exascale computing requires1000x improvement in energy efficiency
 - By 2020: technology => 2.2x, circuit design => 3x, architecture => 4x
 - Power goes into moving data around communication dominates power
- Not considered above: principles exploited by the MPPA[®]
 - Manycore platforms based on low-power CPUs and distributed memory
 - SoC nodes integrating high-speed networking and parallel computing

In production

- Processing performance
 - 700 GOPS 230 GFLOPS (400MHz)

MPPA

MANYCORE

- Power efficiency
 - 5W to 15W (10W typical)
 - Advanced power management
- Timing predictability
- DDR3, PCI Gen3, Ethernet 10G
- Architecture scalability
 - Processor tiling through NoC extensions
- Software programmable
 - High level programming models
 - Advanced debugging and tracing

C KALRAY

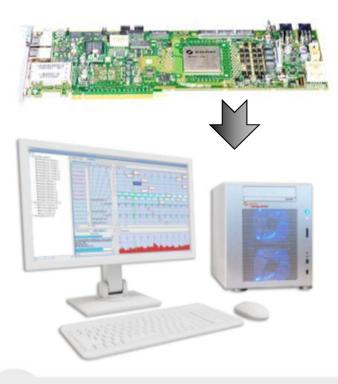
KALRAY, a global solution

High performance, low power and programmable massively parallel processors

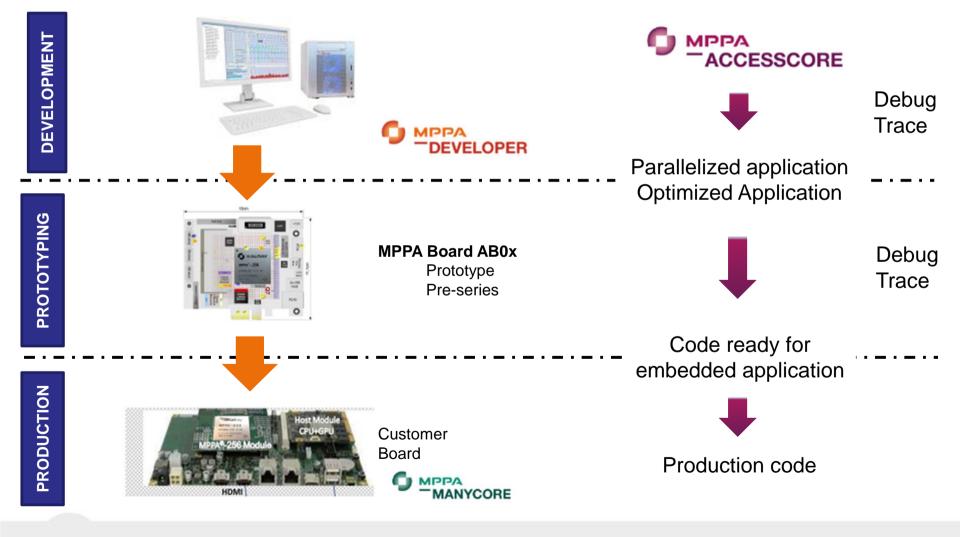
C/C++ based Software Development Kit (SDK) for massively parallel programing

Development platform "Ready to develop"

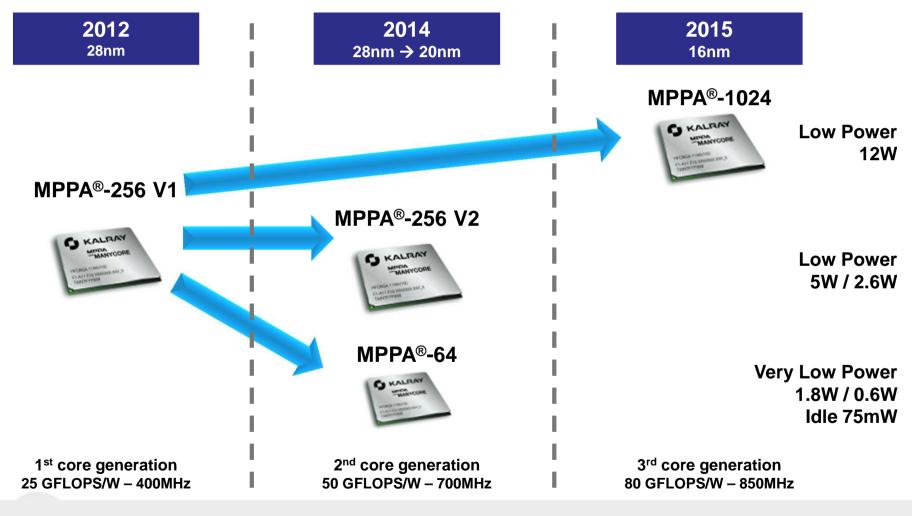
Reference design boards Application specific boards Single or Multi-MPPA boards



MPPA® DEVELOPER Workstation

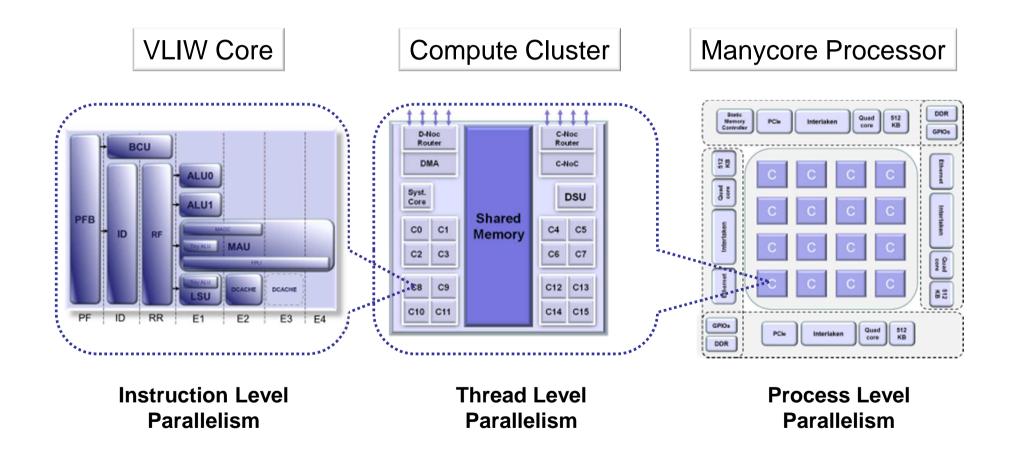

- Develop, optimize and evaluate your applications
- Exploit the computing power of the 256 VLIW cores
- "Ready to develop" configuration (no specific set-up)

- PCIe board MPPA[®]-256 Processor
- PCIe board for debug/probe
- Intel core I7 CPU 3.6GHz, Linux OS
- MPPA ACCESSCORE SDK installed
- Compatible with Multi MPPA board
- Additional services:
 - Extranet access
 - Support Team access
 - Getting started training
 - SDK maintenance

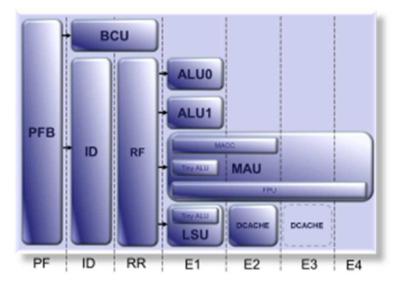


From MPPA DEVELOPER to Customer Product

MPPA MANYCORE Roadmap

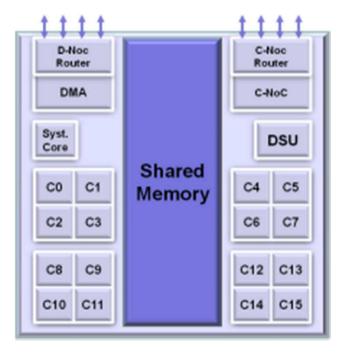

Architecture scalability for high performances and low power

©2013 - Kalray SA All Rights Reserved



MPPA®-256 Processor Hierarchical Architecture

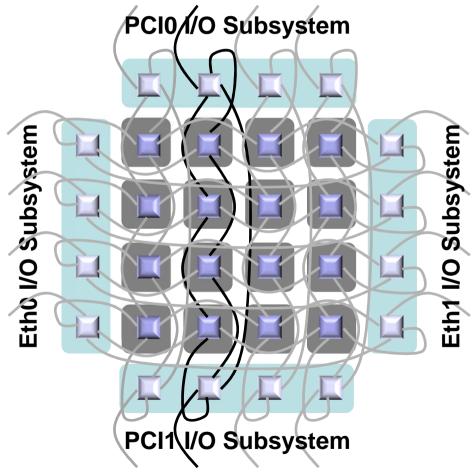
MPPA®-256 VLIW Core Architecture



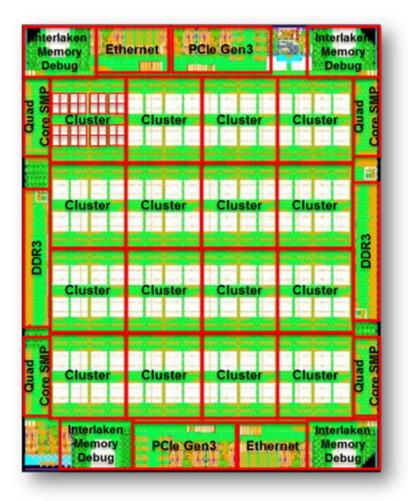
- 5-issue VLIW architecture
- Predictability & energy efficiency
- 32-bit/64-bit IEEE 754 FPU
- MMU for rich OS support

- Data processing code
 - Byte alignment for all memory accesses
 - Standard & effective FPU with FMA
 - Configurable bitwise logic unit
 - Hardware looping
- System & control code
 - MMU → single memory port → no function unit clustering
- Execution predictability
 - Fully timing compositional core
 - LRU caches, low miss penalty
- Energy and area efficiency
 - 7-stage instruction pipeline, 400MHz
 - Idle modes and wake-up on interrupt

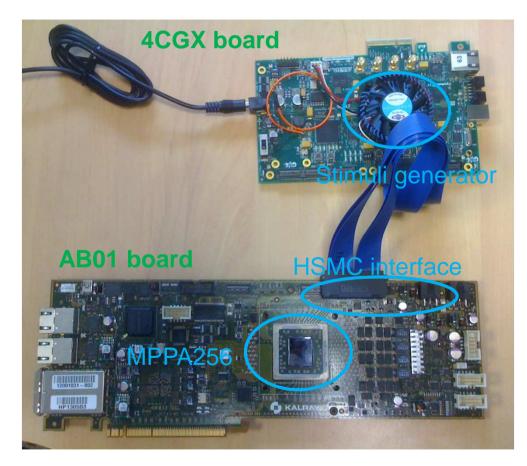
MPPA®-256 Compute Cluster


- 16 PE cores + 1 RM core
- NoC Tx and Rx interfaces
- Debug Support Unit (DSU)
- 2 MB of shared memory

- Multi-banked parallel memory
 - 16 banks with independent arbitrer
 - 38,4GB/s of bandwidth @400MHz
- Reliability
 - ECC in the shared memory
 - Parity check in the caches
 - Faulty cores can be switched off
- Predictability
 - Multi-banked address mapping either interleaved (64B) or blocked (128KB)
- Low power
 - Memory banks with low power mode
 - Voltage scaling


MPPA®-256 Clustered Memory Architecture Explicitly addressed NoC with AFDX-like guaranteed services

- 20 memory address spaces
 - 16 compute clusters
 - 4 I/O subsystems with direct access to external DDR3 memory
- Dual Network-on-Chip (NoC)
 - Data NoC & Control NoC
 - Full duplex links, 4B/cycle
 - 2D torus topology + extension links
 - Unicast and multicast transfers
- Data NoC QoS
 - Flow control and routing at source
 - Guaranteed services by application of network calculus
 - Oblivious synchronization


MPPA®-256 Processor I/O Interfaces

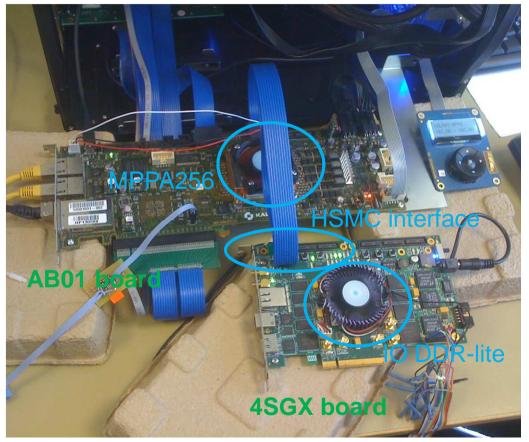
- DDR3 Memory interfaces
- PCIe Gen3 interface
- 1G/10G/40G Ethernet interfaces
- SPI/I2C/UART interfaces
- Universal Static Memory Controller (NAND/NOR/SRAM)
- GPIOs with Direct NoC Access (DNA) mode
- NoC extension through Interlaken interface (NoC Express)

MPPA®-256 Direct NoC Access (DNA)

NoC connection to GPIO

- Full-duplex bus on 8/16/24 bits + notification + ready + full bits
- Maximum 600 MB/s @ 200 MHz
- Direct to the GPIO 1.8V pins
- Indirect through low-cost FPGA

Data sourcing

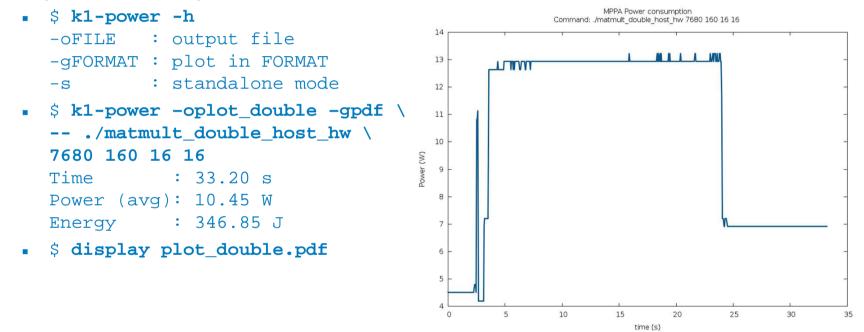

- Input directed to a Tx packet shaper on I/O subsystem 1
- Sequential Data NoC Tx configuration

Data processing

- Standard data NoC Rx configuration
 - Application flow control to GPIO
 - Input data decounting
 - Communication by sampling

MPPA®-256 Sample Use of NoC Extensions (NoCX)

Mapping of IO DDR-lite on FPGA


- Altera 4SGX530 development board
- Interlaken sub-system (x3 lanes up to 2.5-Gbit/sec)
- 300MHz DDR3
- x1 RM + x1 DMA + 512-Kbyte SMEM
 @ 62.5MHz
- Single NoC plug

4K video through HDMI emitters

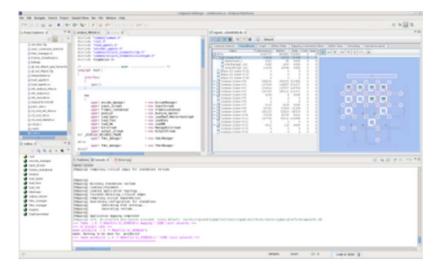
- Interlaken configured in Rx & Tx
- 1.6-Gbit/sec effective data NoC bandwidth reached
 - Limiting factor is the FPGA device internal frequency
 - Effective = 62.5MHz * 32-bit * 80%
- Output of uncompressed 1080p video
 @ 60-frame/sec

Measuring Power and Energy Consumption

k1-power tool for power measurement crom command shell

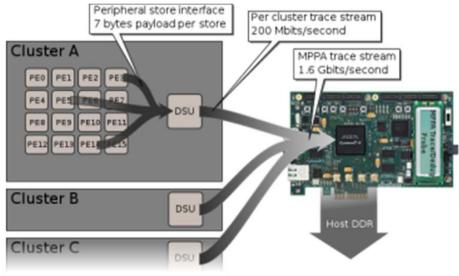
- libk1power.so shared library, control measure from user code
 - int k1_measure_callback_function(int (*cb_function)
 (float time, double power));
 - int k1_measure_start(const char *output_filename);
 - int k1_measure_stop(k1_measure_t *measures);

typedef struct {
 float time;
 double power;
 float energy;
} k1_measure_t;


Manycore Technology Comparison

	Cores	GFLOPS (SP)	Active Power	Real Time	DDR	Ethernet
Intel Xeon Phi	52 x86	2147	300W	No	GDDR5 1866	No
Tilera TileGx	72	80	60W	No	4 DDR3 1600	8 10G
NVIDIA Tegra4	4 A15 72 SC	45 75	8W	No	2 DDR3 1866	1G
TI Keystonell	4 A15 8 C66x	45 154	25W	Yes	2 DDR3 1600	10G
Kalray MPPA	288 K1	230	10W	Yes	2 DDR3 1600	8 10G

- Eclipse Based IDE and Linux-style command line
- Full GNU C/C++ development tools for the Kalray VLIW core
 - GCC 4.7 (GNU Compiler Collection), with C89, C99, C++ and Fortran
 - GNU Binary utilities 2011 (assembler, linker, objdump, objcopy, etc.)
 - GDB (GNU Debugger) version 7.3, with multi-threaded code debugging
 - Standard C libraries: uClibc, Newlib + optimized libm functions



Simulators, Debuggers & System Trace

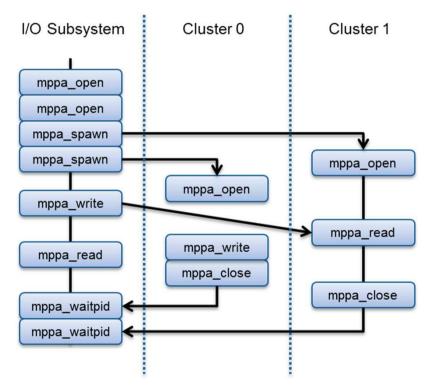
- Platform simulators
 - Cycle-accurate, 400KHz per core
 - Software trace visualization tool
 - Performance view using standard Linux kcachegrind & wireshark
- Platform debuggers
 - GDB-based, follow all the cores
 - Debug routines of each core activate the tap controller for JTAG output
- System trace acquisition
 - Each cluster DSU is able to generate 200Mb/s of trace
 - 8 simultaneous observable trace flows out of 20 sources

- System trace display
 - Based on Linux Trace Toolkit NG (low latency, on demand activation)
 - System trace viewer (customized view per programming model)

- Computation blocks and communication graph written in C
- Cyclostatic data production & consumption
- Firing thresholds of Karp & Miller
- Dynamic dataflow extensions
- Language called Sigma-C

Automatic mapping on MPPA[®] memory, computing, & communication resources

15A R5A R5A R5A



- Dataflow Process Networks (DPN) [Lee & Parks 1995]
 - Kahn Process Network with functional actors (no persistent agent state)
 - Kahn Process Network with sequential firing rules (can be tested in a pre-defined order using only blocking reads)
- Synchronous Dataflow [Benveniste et al. 1994]
 - Clocks are associated with tokens carried by the channels
- Static Dataflow (SDF) [Lee & Messerschmitt 1987]
 - Agents producing and consuming a constant number of tokens
 - Single-rate SDF is known as Homogenous SDF (HSDF)
- Cyclo-Static Dataflow (CSDF) [Lauwereins 1994]
 - A cyclic state machine unconditionally advances at each firing
 - Known number of tokens produced and consumed for each state

POSIX-Level Programming Environment

- POSIX-like process management
 - Spawn 16 processes from the I/O subsystem
 - Process execution on the 16 clusters start with main(argc, argv) and environment
- Inter Process Communication (IPC)
 - POSIX file descriptor operations on 'NoC Connectors'
 - Inspired by supercomputer communication and synchronization primitives
- Multi-threading inside clusters
 - Standard GCC/G++ OpenMP support
 - #pragma for thread-level parallelism
 - Compiler automatically creates threads
 - POSIX threads interface
 - Explicit thread-level parallelism

- Build on the 'pipe & filters' software component model
 - Processes are the atomic software components
 - NoC objects operated through file descriptors are the connectors:

Connector	Purpose	Tx:Rx Endpoints	Resources
Sync	Half synchronization barrier	N:1, N:M (multicast)	CNoC
Portal	Remote memory window	N:1, N:M (multicast)	DNoC
Sampler	Remote circular buffer	1:1, 1:M (multicast)	DNoC
RQueue	Remote atomic enqueue	N:1	DNoC+CNoC
Channel	Zero-copy rendez-vous	1:1	DNoC+CNoC

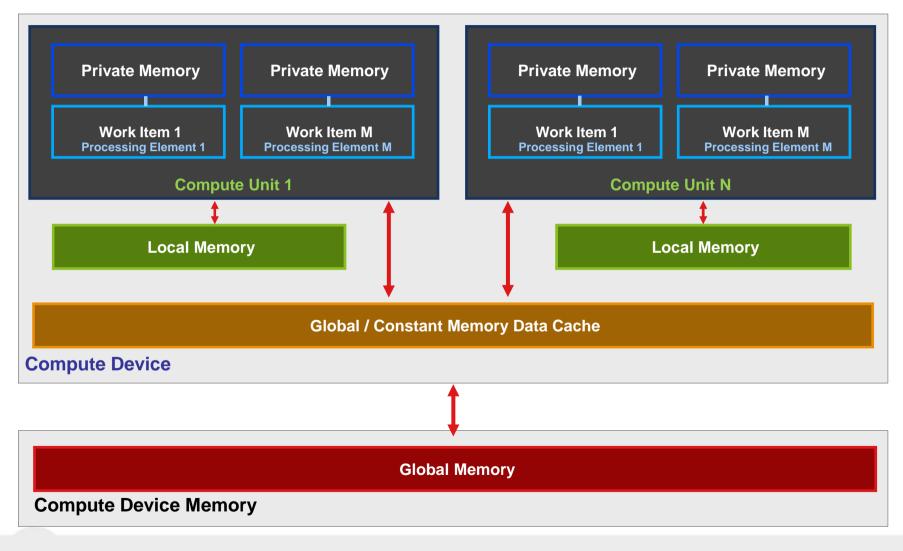
- Synchronous operations: open(), close(), ioctl(), read(), write(), pwrite()
- Asynchronous I/O operations on Portal, Sampler, RQueue
 - Based on aio_read(), aio_error(), aio_return()
 - NoC Tx DMA engine activated by aio_write()

Environment

- MPPA[®] support of OpenCL
 - Task parallel model: one kernel per compute cluster
 - Native kernel mode: clEngueueNativeKernel()
 - Standard task parallel mode: clEnqueueTask()
 - Emulate global memory with Distributed Shared Memory (DSM)
 - Use the MMU on each core, assume no false sharing
 - Use the MMU on each core, resolve false sharing like Treadmarks
- MPPA[®] Bulk Synchronous Streaming
 - Adapt Bulk Synchronous Parallel (BSP) model to the MPPA[®]
 - Execute a number of cluster processes > number of clusters
 - Double buffering to overlap cluster process execution and swapping

C KALRAY

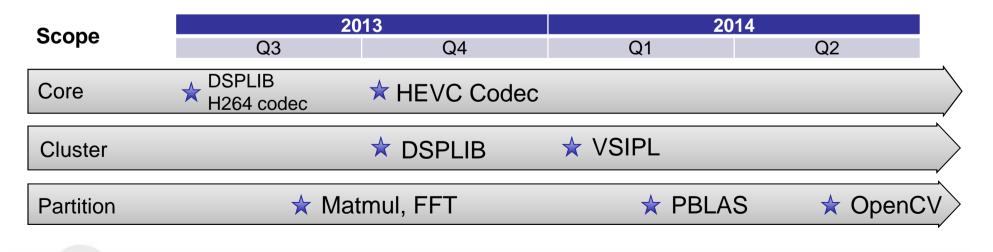
Datafloy

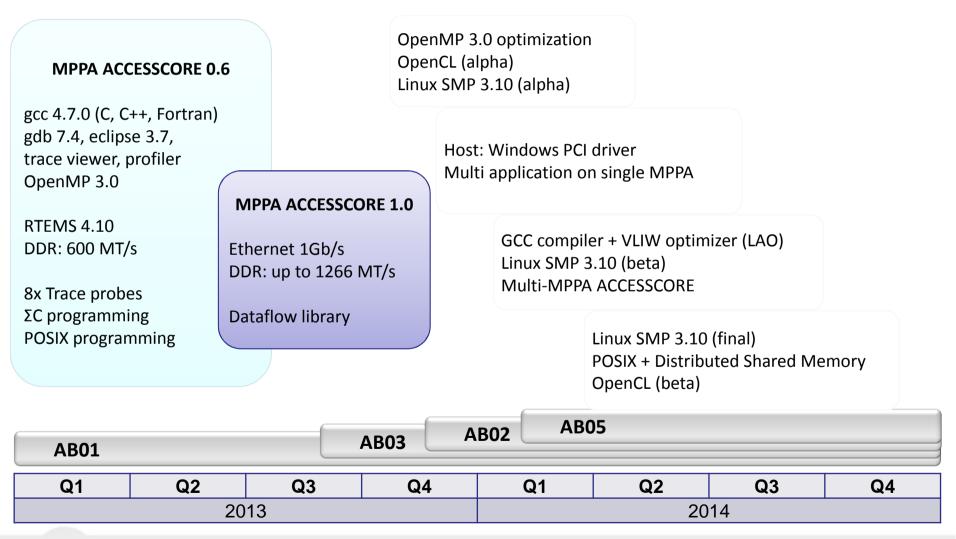

Stress

GPU Style

- Standard OpenCL has two programming models
 - Data parallel, with one work item per processing element (core)
 - Task parallel, with one work item per compute unit (multiprocessor)
 - In native kernels, may use standard C/C++ static compiler (GCC)
- MPPA[®] support of OpenCL
 - Task parallel model: one kernel per compute cluster
 - Native kernel mode: clEnqueueNativeKernel()
 - Standard task parallel mode: clEnqueueTask()
 - Emulate global memory with Distributed Shared Memory (DSM)
 - Use the MMU on each core, assume no false sharing
 - Use the MMU on each core, resolve false sharing like Treadmarks
 - Data parallel model once LLVM is targeted to the Kalray VLIW core
 - Currently use LLVM to generate C99, which is compiled with GCC

OpenCL Target Compute Platform




MPPA[®] ACCESSLIB optimized application building blocks

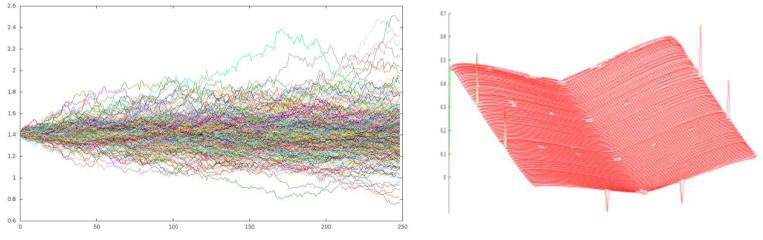
- Application building blocks optimized at different scopes
 - MPPA Core register file & cache
 - MPPA Cluster shared memory
 - MPPA Partition distributed memory
- Delivered as C libraries
 - Dataflow programming
 - POSIX-level programming

- Numerical and signal processing
 - FFT, Filtering and convolution
 - BLAS-level primitives
 - VSIPL (Vector Signal Image)
 - libm extensions with metalibm
- Video and image processing
 - H264, HEVC encode / decode
 - OpenCV Computer vision

MPPA Software Roadmap

©2013 - Kalray SA All Rights Reserved

Addressable Market Segments


Kalray also serves the **Academic market** (universities and research institutions)

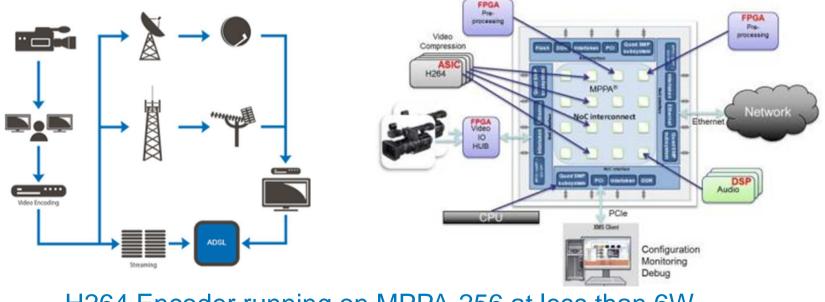
Computational Finance Application

- Option pricing by Monte Carlo method
- Optimized pseudo random generator
- Parallel Map / Reduce scheme across multiple MPPA processors
- Optimized mathematical primitives for Kalray core

Power efficiency 5x better than recent GPU

Audio Processing Application

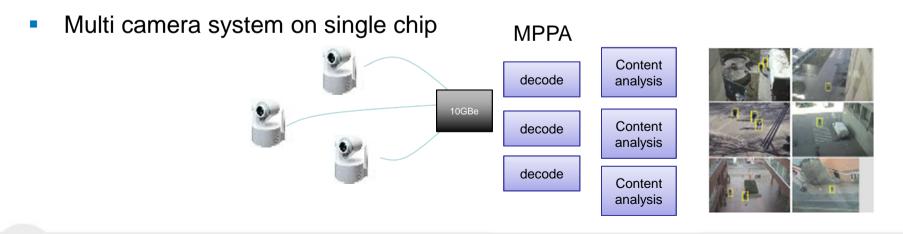
Increase performances and reduce total system cost


Static Memory Controller	PCle	Interlak	en Qua		DDR GPIOs
Quad 512 core KB	CTRL	FREE	FREE	FREE	Ethernet
Intertaken	Ch0-7	Ch8-15	Ch16- 23	Ch24- 31	Interlakon
	MDING	MIXING	MIXING	MDING	
Ethernet	FREE	Audio Effect	Audio Effect	FREE	Quad 512 core KB
GPIOS DDR	PCie	Interi		uad 512 KB	Ì

- Multi Channel processing
 - 256 VLIW cores ~ 500 Low End DSPs
- Channel routing and control
 - High performance NoC + 32 integrated DMAs
 - System integration
 - Up to 8 x Ethernet 1GbE
- Low Latency audio processing
 - 500µs latency from input to output samples
- Cost effective
 - Equivalent to complex multi DSPs + FPGAs system

Video Broadcasting Example

- High definition H264 encoder on one MPPA[®]-256
- System integration, lower power and cost
- Heterogeneous implementation
- Flexibility & scalability



H264 Encoder running on MPPA-256 at less than 6W

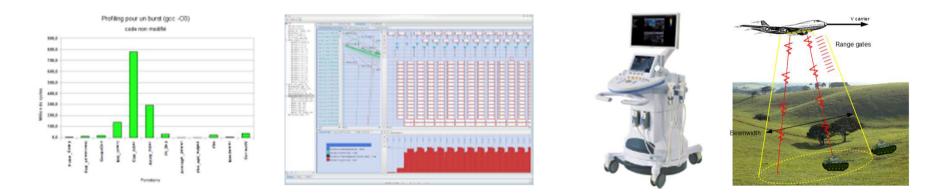
Video Protection Example

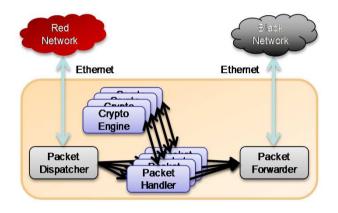
- Improved Content analysis
 - High resolution camera / low false detection rate
 - Robust algorithms
 high performance computing of MPPA
 - Real Time detection
 - More simple infrastructure → Compute power at the source
- System integration: Ethernet input / decode / content analysis / encode

Augmented Reality Example

- Assisted operation & maintenance
 - ARMAR (Augmented Reality for Maintenance and Repair)

 Assisted conformity control

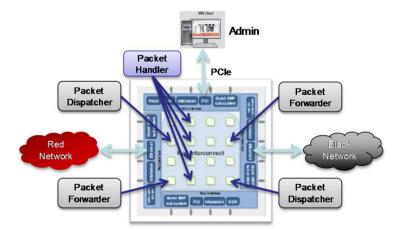



Signal Processing Example

- Radar applications: STAP, …
- Beam forming : Sonar, Echography
- Software Defined Radio (SDR)
- Dedicated libraries (FFT, FTFR, ...)

Well suited to massively parallel architectures Alternative of embedded DSP + FPGA platforms

High-Speed VPN Gateway Example



Evaluation for the implementation of a 20 to 40 Gbs VPN gateway

- IP packet processing
- AES cryptography

Exploit key features of the MPPA architecture

- 2 x 40 Gbs Ethernet interfaces (or 8 x 10 Gbs)
- PCIe Gen 3 for integration
- Optimized instructions for efficient cryptography
- NoC extension interface for multi-chip solutions

Kalray Offices

Headquarters – Paris area

86 rue de Paris, 91 400 Orsay France

Tel: +33 (0)1 69 29 08 16 email: info@kalray.eu

Grenoble office

445 rue Lavoisier,38 330 Montbonnot Saint MartinFrance

Tel: +33 (0)4 76 18 09 18 email: info@kalray.eu

All trademarks, service marks, and trade names are the marks of the respective owner(s), and any unauthorized use thereof

Japan office

CVML, 3-22-1, Toranomon, Minato-ku, Tokyo 105-0001, Japan

Tel: 080-4660-2122 email: ksugiyama@kalray.eu

is strictly prohibited. All terms and prices are indicatives and subject to any modification without notice.