Simplified Models and Muon g_{-2} (in the MSSM)

Andre Lessa University of Sao Paulo

Coordinating a simplified models effort CERN - October 30th, 2013

In collaboration with the SModelS* group *(see S. Kulkarni's talk)

This is a SMS "user's perspective" talk:

What happens when we apply the current SMS results to constrain physics motivated scenarios?

This is a SMS "user's perspective" talk:

What happens when we apply the current SMS results to constrain physics motivated scenarios?

- What are the most important analyses? (as a function of parameter space)
- What are the main limitations of the current SMS results?

This is a SMS "user's perspective" talk:

What happens when we apply the current SMS results to constrain physics motivated scenarios?

- What are the most important analyses? (as a function of parameter space)
- What are the main limitations of the current SMS results?

 \rightarrow Here we use the SMS experimental results (through SModels) to answer: What is the status of g_{-2} in the (unconstrained) MSSM after the LHC Run I?

Why use SMS results to study g_{-2} ?

• g_{-2} is one of the few *experimental motivations* for BSM physics: $a_{\mu}^{E821} - a_{\mu}^{SM}(e^+e^-) = (27.8 \pm 8) \times 10^{-10} (3.5\sigma)$

- g_{-2} is one of the few *experimental motivations* for BSM physics: $a_{\mu}^{E821} - a_{\mu}^{SM}(e^+e^-) = (27.8 \pm 8) \times 10^{-10} (3.5\sigma)$
- A number of constrained SUSY scenarios are already excluded by g₋₂ (CMSSM, NUHM1)

- g_{-2} is one of the few *experimental motivations* for BSM physics: $a_{\mu}^{E821} - a_{\mu}^{SM}(e^+e^-) = (27.8 \pm 8) \times 10^{-10} (3.5\sigma)$
- A number of constrained SUSY scenarios are already excluded by g₋₂ (CMSSM, NUHM1)
- g₋₂ depends on a *small subset* of MSSM parameters

- g_{-2} is one of the few *experimental motivations* for BSM physics: $a_{\mu}^{E821} - a_{\mu}^{SM}(e^+e^-) = (27.8 \pm 8) \times 10^{-10} (3.5\sigma)$
- A number of constrained SUSY scenarios are already excluded by g₋₂ (CMSSM, NUHM1)
- g₋₂ depends on a *small subset* of MSSM parameters
- Several signal topologies are possible
 → requires the implementation of
 several experimental analyses

- g_{-2} is one of the few *experimental motivations* for BSM physics: $a_{\mu}^{E821} - a_{\mu}^{SM}(e^+e^-) = (27.8 \pm 8) \times 10^{-10} (3.5\sigma)$
- A number of constrained SUSY scenarios are already excluded by g₋₂ (CMSSM, NUHM1)
- g₋₂ depends on a *small subset* of MSSM parameters
- Several signal topologies are possible
 → requires the implementation of
 several experimental analyses
- Good framework for applying simplified models constraints

• Main MSSM contributions:

• Main MSSM contributions:

$$\frac{\tilde{W}^{-}, \tilde{H}^{-}}{\tilde{\nu}} \frac{\mu}{\mu} + \frac{\mu}{\tilde{\mu}} \frac{\tilde{W}, \tilde{H}, \tilde{B}}{\tilde{\mu}} \simeq 12 \times 10^{-10} \frac{\tan \beta}{60} \frac{(775 \, \text{GeV})^2}{M_2 \, \mu} \mathcal{O}(1)$$

- No dependence on the strong sector
- Only depends on the EW gaugino and slepton sectors: μ, M₁, M₂, m_{μ̃_L,R}, tan β

• Main MSSM contributions:

$$\frac{\tilde{W}^{-}, \tilde{H}^{-}}{\tilde{\nu}} \frac{\mu}{\mu} + \frac{\mu}{\tilde{\mu}} \frac{\tilde{W}, \tilde{H}, \tilde{B}}{\tilde{\mu}} \simeq 12 \times 10^{-10} \frac{\tan \beta}{60} \frac{(775 \text{ GeV})^2}{M_2 \mu} \mathcal{O}(1)$$

- No dependence on the strong sector
- Only depends on the EW gaugino and slepton sectors: μ, M₁, M₂, m_{μ̃L,R}, tan β
- $m_{LSP} \lesssim$ 530 GeV (670 GeV) at 1 σ (2 σ)

General scan ($\tilde{\chi}_1^0$ LSP):

• Main MSSM contributions:

$$\frac{\tilde{W}^{-}, \tilde{H}^{-}}{\tilde{\nu}} \frac{\mu}{\mu} + \frac{\mu}{\tilde{\mu}} \frac{\tilde{W}, \tilde{H}, \tilde{B}}{\tilde{\mu}} \simeq 12 \times 10^{-10} \frac{\tan \beta}{60} \frac{(775 \text{ GeV})^2}{M_2 \mu} \mathcal{O}(1)$$

- No dependence on the strong sector
- Only depends on the EW gaugino and slepton sectors: μ, M₁, M₂, m_{μ̃,R}, tan β
- $m_{LSP} \lesssim$ 530 GeV (670 GeV) at 1 σ (2 σ)

g₋₂ by itself does not guarantee a visible spectrum at the LHC-Run I

General scan ($\tilde{\chi}_1^0$ LSP):

For the results presented here:

- Simplifying assumptions:
 - $m_{ ilde{t}}, m_{ ilde{b}} \sim$ 1 TeV
 - ▶ m_{g̃} = 1.5 TeV, m_{g̃} = 2 TeV
 - Degenerate sleptons (but $m_{\tilde{l}_l} \neq m_{\tilde{l}_R}$)
- No strong sector constraints ($m_{\tilde{g}} = 1.5$ TeV and $m_{\tilde{q}} = 2$ TeV)
- ullet \sim 15 LHC results for EW gauginos and sleptons
- Constraints on simplified models are implemented through SModelS

g–2 and SModels

LHC Constraints

• Scan parameters: $M_1, M_2, \mu, m_{\tilde{l}_l}, m_{\tilde{l}_R}, \tan \beta$

A point is excluded if at least one topology has $\sigma \times BR >$ analysis upper limit (at 95% C.L.)

LHC Constraints

Why points with low masses/high cross-sections are no excluded?

Why points with low masses/high cross-sections are no excluded?

- Some possibilities:
 - Several competing topologies (low $\sigma \times BR$ for a single SMS topology)
 - Masses fall outside upper limits range
 - Small signal efficiencies (mass compressed scenarios)
 - Long cascade decay topologies (no SMS results so far)
 - Signal topologies do not match any analysis

- $m_{\tilde{\chi}_1^0} \sim m_{\tilde{\chi}_1^+}$:
 - asymmetric decays: $\tilde{\chi}^+_1 \tilde{\chi}^0_1$ and $\tilde{\chi}^0_2 \tilde{\chi}^0_1$ production
 - distinct final states: $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow W^{\pm} \gamma \tilde{\chi}_1^0 \tilde{\chi}_1^0$

- Simplified models are particularly useful for the g_{-2} motivated MSSM
 - Small set of parameters, small cascade decays,...

- Simplified models are particularly useful for the g_{-2} motivated MSSM
 - Small set of parameters, small cascade decays,...
- The resulting LHC constraints already exclude a significant part of the g_{-2} consistent MSSM

- Simplified models are particularly useful for the g_{-2} motivated MSSM
 - Small set of parameters, small cascade decays,...
- The resulting LHC constraints already exclude a significant part of the g_{-2} consistent MSSM
- SModels provides a framework to consistently test models using the full range of (SMS) experimental results

- Simplified models are particularly useful for the g_{-2} motivated MSSM
 - Small set of parameters, small cascade decays,...
- The resulting LHC constraints already exclude a significant part of the g_{-2} consistent MSSM
- SModels provides a framework to consistently test models using the full range of (SMS) experimental results
- Despite being 'conservative', SModelS can be a first step tool to...
 - identify the most relevant analyses for specific scenarios
 - identify 'holes' in the parameter ranges of existing analyses
 - identify the relevant missing analyses