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Abstract.  The Geant4 simulation toolkit has reached maturity in the middle of the previous 
decade, providing a wide variety of established features coherently aggregated in a software 
product, which has become the standard for detector simulation in HEP and is used in a variety 
of other application domains. 
We review the most recent capabilities introduced in the kernel, highlighting those, which are 
being prepared for the next major release (version 10.0) that is scheduled for the end of 2013. 
A significant new feature contained in this release will be the integration of multi-threading 
processing, aiming at targeting efficient use of modern many-cores system architectures and 
minimization of the memory footprint for exploiting event-level parallelism. 
We discuss its design features and impact on the existing API and user-interface of Geant4. 
Revisions are made to balance the need for preserving backwards compatibility and to 
consolidate and improve the interfaces; taking into account requirements from the multi-
threaded extensions and from the evolution of the data processing models of the LHC 
experiments. 

1. Introduction 
The new release of Geant4 [1] planned for 2013 is going to be the first major release of the simulation 
toolkit since 2007. Release 10.0 will incorporate many changes in almost all areas, included an 
evolved API for allowing efficient execution of simulation programs on modern parallel architectures, 
exploiting multi-threading with parallelisation at event level. Particular care has been taken in 
designing the system, in order to allow for preserving backwards compatibility with user’s code 
traditionally running in sequential mode. We report on the main features, which characterizes multi-
threading for event-level parallelism by illustrating the main design principles and choices made, 
together with the measurements performed on different hardware architectures for performance and 
scalability over the number of worker threads. 
We are also going to review a selection of important features, which will be provided with the new 
release, not covering developments in the physics modules, which in any case represent a relevant part 
of the features characterising the new release [2] [3]. 
 

2. Multi-threading 
The first public release of a Geant4-MT prototype was made in 2011, based on a study initiated in 
2009, where different event-parallelism techniques (multi-processing with or without copy-on-write) 
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have been studied and compared [4]. The first prototype has served as proof of principle for the 
introduction of multi-threading in the Geant4 code and for identifying the subset of C++ classes to 
review for thread-safety, performing first-level testing on selected benchmarks. A new version of the 
prototype was delivered in 2012, based on release 9.5 of Geant4, establishing the basis for the 
integration of the new features to the main code base. Significant re-engineering of the prototype took 
place in order to incorporate it into the main Geant4 development line, which took place in early 2013 
and resulting in the 10.0-beta release, deployed last June.   
 

2.1. Design principles 
As a Monte Carlo simulation toolkit, Geant4 profits from improved throughput via parallelism derived 
from independence among modeled events and their computation. Geant4 release 10 allows the 
generation of events in parallel, by defining a number of threads available in the system as 
independent worker units, which get their internal state initialized by a master thread, including the 
initial random seed for their internal random generator. Each worker thread will then compete for the 
generation of the next event and perform the computation independently (figure 1) 
 

 

Figure 1. Each worker thread performs 
independently, by accessing to shared 
data (geometry description, physics data 
and configurations, etc,); a thread gets 
initialised in its internal state by a master 
thread, which provides per-event initial 
random seeds prepared in a queue; threads 
will then compete for the next event to be 
processed, filling their internal structures 
for hits/digits; final results can be finally 
merged at the end of the run. 

 
Worker threads are accessing shared data for the geometry description, physics quantities and 
configurations without violating thread safety. This has been made possible by having carefully 
identified the sharable objects and, for each of them, having determined which member fields are 
supposed to be read-only after the worker threads have been spawned. Instances of such objects will 
be shared among threads; however some of the data fields, which are not invariant during the event-
loop, are transformed to thread-private. This is done by defining such objects as split-classes, for 
which the data to be considered as thread-private has been encapsulated in dedicated container classes. 
These data are then organised in a thread-local storage [5] array by a single dedicated static manager. 
Such technique allows in addition to considerably reduce the memory footprint required for the 
spawning of new threads, contributing to improve memory locality. 
The system has been designed to make use of the POSIX threads standard, in order to ensure long-
term maintainability of the code and allow for the possibility to evolve it to newly emerging 



 
 
 
 
 
 

technologies. This facilitates the integration of Geant4 within external frameworks wishing to adopt 
specific parallelization solutions, based either on MPI or Intel®-TBB (Threading Building Blocks™). 
The use of locks for mutual exclusion (mutex) of threads has been reduced to the minimum and 
restricted to non-critical areas of the code; this has allowed to keep under control the scalability of the 
performance in function of the number of threads used in computation, achieving excellent results. 
 

2.2. Porting of user’s applications to multi-threading 
Special care has been taken in designing the final API for allowing applications to exploit event-level 
parallelism and assure thread-safety. Backwards compatibility is guaranteed when using the old 
interfaces for running simulation in sequential mode. The criterion we adopted in designing the new 
API was that the extra effort required for porting an existing application to multi-threading should be 
minimal, in any case a small fraction of the total development effort required for developing that 
application. We expect that for a simple or standalone Geant4 application, the time required to 
complete a first port should not exceed a few hours effort. 
In order to port a Geant4 application to multi-threading, it is required to inspect and potentially adapt a 
small set of classes under the responsibility of the application developer. In addition to replace the 
sequential G4RunManager with the multi-threading capable one G4MTRunManager in the main 
program, the key step is to create separate instances for each thread of the sensitive detectors, i.e. the 
user’s classes including the relevant code for the generation of the hits, or products of the simulation. 
A new method CreateSDandField is now provided; the corresponding part of the detector 
construction code should be now provided in this method, which will be called by the kernel for each 
thread initialization. The same method also comes with a generic signature, and can be used in 
complex applications, like those involving external frameworks as alternative for looping over all the 
relevant volumes and invoke cloning of the sensitive detectors themselves. Framework and application 
developers can choose between implementing the Clone method for their sensitive detectors or 
refactoring their DetectorConstruction code to implement the relevant CreateSDandField 
method. 
A revision of all those classes (user actions) where the internal state of the simulation is handled and 
customized is necessary, in particular if inter-dependencies between these classes are present. A new 
class G4VUserActionInitialization has been introduced for the user to instantiate the user 
actions classes (either mandatory and optional), and allow for clearly separate those actions which are 
associated to a worker thread from those associated to a run and therefore handled by 
G4UserRunAction. 
At the end of the application run, Geant4 can automatically apply reductions of the produced results, if 
the default built-in scoring and hits recording capabilities are used; histograms can also be 
automatically merged when using the built-in analysis module [6]. It is however a choice left to the 
application developer the way to handle the output, either collecting it into separate files (one per 
thread), or interleaved as parts of one or more output files. Depending on the application complexity, 
the handling of the output stream must be carefully evaluated in order to reduce the overhead coming 
from I/O operations. 
 

2.3. Physics validation and performance measurements 
Since the first day the code base was migrated to multi-threading, the overall physics and CPU 
performance have been regularly monitored, by comparing the sequential version of the code to a 
multi-threaded equivalent. We refer here to the most recent measurements made to date, based on the 
development code base of September 2013. The applications chosen are in the High Energy Physics 
domain, in order to exercise reasonably complex physics configurations and realistic geometrical 
setups: a Simplified Calorimeter test suite, allowing for studying a big variety of primary species on a 



 
 
 
 
 
 

wide energy range [7], and a realistic geometry description of the CMS experiment at LHC [8] 
(FullCMS benchmark) imported from a GDML [9] file. 
Physics calculations made with the multi-threaded version are compared and verified to be exactly the 
same as those obtained in the sequential case. A first test has been made to verify that statistical 
agreement is reached for relevant physics observables (energy spectrum, longitudinal and transverse 
shower profile in the calorimeter). A second more stringent test is made comparing the history of the 
random number engine, to verify that same status is reached at the end of an event generated in 
sequential mode and in multi-threading mode on a specific thread, given the same initial seed. Perfect 
event reproducibility could be achieved for most physics configurations, which have been verified. 
CPU measurements made on the realistic geometry setup from the CMS experiment [8], with different 
physics configurations, reveal excellent linearity of the speedup versus the used number of threads, 
obtained on different systems equipped with either AMD of Intel® chips. The results for one worker 
thread compared to the same sequential application show a minimal overhead of 1%, while the 
speedup is linear with efficiencies higher than 94%. The memory saving is excellent; by running 
Geant4 in multi-threaded mode, an application like the FullCMS benchmark with k threads requires 
about half of the memory needed for running k clones of the sequential version of the same 
application. The per-thread memory overhead is at the level of 40-80 MB depending on the 
application. 
Good efficiency and linearity of performance versus the number of threads are also confirmed when 
running on the relatively cheap Exynos 4412 Prime quad-core Cortex-A9 chip. 
Finally, a test made of the same realistic geometry setup has been performed on one Intel® Xeon 
Phi™ co-processor card, featuring 61 cores (4-way hyper-threading) and 16 GB memory, confirming 
good scalability and memory use up to the maximum allowed of 244 threads (figure 2). 
 

 

Figure 2. Measurement of the total 
speedup obtained by running full 
physics (FullCMS benchmark, 50 GeV 
pions with B-field turned on) on the 
Intel® Xeon Phi™ (7110P, 1.238 GHz, 
61 cores) co-processor, up to the 
maximum number of threads. Geant4 
multi-threaded efficiently uses hyper-
threading [10], although no explicit use 
of the built-in vector units is made. 

 
 
 
 
 



 
 
 
 
 
 

3. Geometry 
The geometry modeler in Geant4 is also evolving in several areas. Key classes have been reviewed to 
become thread-safe for event-level parallelism; in addition, several new features have been introduced 
and some obsolete code, which was deprecated in release 9.6, has been removed. 
All built-in UI commands for detecting geometrical volumes overlaps have been revisited and re-
implemented to make use of the capability of precisely determine location of points on volume’s 
surfaces and inspect for overlaps in the geometrical hierarchy of the placed volumes. These include the 
possibility to tune the resolution of the test by defining the number of points to generate, or the 
maximum number of errors to report for a certain volume, or set a tolerance for the extent of the 
overlap to report, or set limits for depth and number of levels in the geometrical hierarchy. 
Navigation in the geometry tree is now adopting a more precise evaluation of the geometrical safety, 
which is no longer approximated or limited by the voxels’ boundaries, as used to happen in the past. 
This enhancement, coming at zero CPU penalty, will be important in future in particular for 
electromagnetic processes to better treat physics effects close to volume’s boundaries. 
A new set of geometrical primitives (solids) is being introduced; it will be possible to use them as 
alternative to the existing traditional primitives, as part of an optional component extracted from the 
AIDA [11] Unified Solids Library [12] and included in addition to the current solids modules. The 
new library is going to provide improved implementations for most traditional shapes, in particular for 
those (tessellated solid, polycone, polyhedra or Boolean union) where an innovative spatial 
optimization technique could be applied for the efficient detection of the components candidates for 
intersection. The new library will include the current state-of-the-art of the implementation, including 
all the new primitives currently available (figure 3). 
 

 

Figure 3. The set of geometrical 
primitives currently composing the 
new AIDA Unified Solids Library: 
box, orb, sphere (+sphere section), 
tube (+cylindrical section), cone 
(+conical section), simple, generic 
& arbitrary trapezoid, tetrahedron, 
polycone, polyhedra, extruded 
solid, tessellated solid and new 
Multi-Union structure. 

 



 
 
 
 
 
 

4. Event biasing 
There is a class of applications for which a standard (analogue), simulation is at least inefficient, or 
even not practicable; this is the class where rare events are the ones of interest. 
The estimation of shielding efficiency in radioprotection is one of these examples: an analogue 
simulation would spend most of the time in transporting particles and interaction products inside the 
shield, leading to a tiny fraction leaving the shield. In this case, particles leaving the shield are the 
"rare events". Very thin detectors may be difficult to simulate as well, as only a small fraction of 
particles may interact inside the volume. Another example is the case of a volume of interest very 
small compared to the overall structure in which the simulation is to be carried out, like the case of the 
simulation of single event upset in a small electronic chips inside the large structure of a satellite. In 
such a case, the events of interest depositing in the chip are rare given they can occur in a fraction of 
time proportional to the size of the electronic chip volume versus the overall satellite volume. 
In such rare events simulation problems, it is possible to boost the simulation efficiency without 
sacrificing the physics quality provided by a full detailed Monte-Carlo description, by magnifying the 
occurrence of the rare event [13]. This is the main purpose of event biasing techniques. There are two 
main classes of event biasing techniques: splitting (killing) and importance sampling. In the first case, 
tracks are split (killed) as long as they approach (recede from) the phase space region of interest: a 
typical use case is the shielding problem; the shield volume is artificially divided into slices on the 
boundaries of which particles are cloned (killed with some probability) if they fly towards (opposite 
to) the direction of the shield exit; this artificial flux regeneration compensates for the physical 
absorption while penetrating the volume of the shield. In importance sampling, the underneath 
physical interaction laws are substituted with biased ones that favour the occurrence of rare events. 
The thin detector volume case can be treated this way [14]: the natural exponential law is replaced by 
a truncated exponential one, whose extension is limited to the track path inside the volume, to 
guarantee that the collision will occur. Many other techniques exist [14]. Whatever technique is 
adopted, a statistical weight is computed at each step a biasing is applied; this weight is used to 
counter-balance for the application of the biased simulation when computing the desired quantities. 
Geant4 already provides a number of biasing techniques splitting-based with geometry importance 
(Bremsstrahlung splitting in electromagnetic or importance sampling based on general particle source 
biasing [15], or in the advanced technique of the reverse Monte Carlo [16]), but we’re missing 
importance sampling techniques in which the physics processes are biased, either in their interaction 
probability, or in their final state generation (energy/angular biasing). Such techniques includes the 
force collision [14], the exponential transform [14], [17] for what concerns the biasing of interaction 
laws, and techniques like DXTRAN [14] (forcing of scattering inside some solid angle), which involve 
final state biasing. 
A new development is going to provide interface classes to allow for the implementation of virtually 
any kind of biasing techniques. The approach considers that biasing is applied in some volumes, user 
selected, outside of which the analogue tracking goes, and inside which a large freedom is to be given 
to the user to apply techniques the most suited to the application needs. 
The scheme has been prototyped for now, and will be delivered with release 10.0. 
 

5. Visualization 
Geant4 release 10.0 sees two key improvements in visualization: in addition to the support for 
multithreading it is also added the ability to produce OpenGL EPS graphics in the absence of a 
hardware graphics card. 
Multithreading poses a challenge for Geant4 for those visualization drivers [18] that incorporate a 
direct (rather than file-mediated) connection from Geant4 to some other technology. The most notable 
case of such connection are in Geant4's flagship visualization drivers, the OpenGL family (including 
the direct mode, OGLX), the display-list mode, OGLS, the OpenInventor-wrapped mode, OIX and the 
Qt-wrapped mode, OGLQt (figure 4). Other examples include the socket-connected forms of the 



 
 
 
 
 
 

DAWN [19] and VRML drivers. The use case we are supporting is one of a single graphics window 
that shows events from any of the worker threads (we considered also the case of having a separate 
graphics window for each worker thread, but found this to be not of no interest to users aside from as 
some sort of multi-threading demo). The challenge is that while we must create a single graphics 
driver in a main thread, the events we want to represent are, by default, only present in the worker 
threads. While it may be possible to eventually drive some systems, such as OpenGL, by starting the 
visualization from the main thread and then contributing additional graphics objects from the worker 
threads, such "context switching" as OpenGL calls it involves a great deal of subtlety. Any solution 
developed at that driver-specific level would have to be separately replicated, with different 
technology, for the other direct drivers (DAWN, VRML). We have instead opted to use an "event 
keeping" strategy, with events copied from worker threads to the master thread, so that drawing of the 
event can always be handled at the single master thread. As of this writing, this master thread solution 
is in place, while additional work is under way for release 10.0 or 10.1 to resolve a limitation of the 
current solution. In the current solution, no events can be drawn until all of the worker threads 
complete their function. For cases in which event simulation takes much less time than visualization, 
this solution is fine, but for some other cases, such as visualization of LHC's complex events, event 
simulation is slow compared to visualization, and we would rather not have to wait for all simulation 
to cease before we begin visualizing results. To this end, we are attempting to move all visualization to 
a dedicated "visualization management thread". This thread will start when visualization is first 
instantiated, doing the initial geometry drawing, then loop, watching the master thread's saved event 
queue, drawing events as fast as possible when they become available on that queue. 
 

 

Figure 4. OpenGL schene rendered 
in Qt-wrapped mode (OGLQt), the 
recommended visualization driver, 
set as the default. 

 
OpenGL graphics in the absence of a GL graphics card has been a goal of Geant4 visualization for 
several years as our OpenGL drivers have moved from being used mainly for live display to also 
become our most popular vector graphics file generator (thanks to the "print to EPS" function that is 
available from GL cards and accessed from a Geant4's visualization command). EPS graphics has 
been available in Geant4 since the first years of the toolkit, through the DAWN visualization system, 
but the GL extension was the first to provide such graphics directly from Geant4, rather than through 
an external graphics application. A limitation was that our GL solution relied on hardware, the 
OpenGL graphics card that is often not present on cluster, cloud or grid servers. Geant4 Release 10.0 
adds a hardware-free alternative, thanks to the XVFB library (X11 Virtual Frame Buffer) [20]. 
Developments are also on going to allow for visualization of a Geant4 application through a web 
browser [21]. 



 
 
 
 
 
 

 

6. Conclusions 
Geant4 Release 10.0, the next major release of the Geant4 simulation toolkit is going to be a big step 
forward in the evolution of the Geant4 software and the capabilities any user will have chance to 
experience. A key feature will be the possibility to exploit event-level parallelism thanks to the multi-
threading extensions now built-in. Measurements performed on different hardware architectures 
capable of hyper-threading or not, have revealed excellent linearity of throughput speedup of the order 
of 94% and reduced memory footprint per-thread, with good results also when running in hyper-
threading regime. Many new features and enhancements are affecting nearly all areas, included the 
physics, which is not covered in this paper. 
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