

Geant4 – Towards major release 10

G Cosmo1
On behalf of the Geant4 Collaboration

E-mail: gabriele.cosmo@cern.ch

Abstract. The Geant4 simulation toolkit has reached maturity in the middle of the previous
decade, providing a wide variety of established features coherently aggregated in a software
product, which has become the standard for detector simulation in HEP and is used in a variety
of other application domains.
We review the most recent capabilities introduced in the kernel, highlighting those, which are
being prepared for the next major release (version 10.0) that is scheduled for the end of 2013.
A significant new feature contained in this release will be the integration of multi-threading
processing, aiming at targeting efficient use of modern many-cores system architectures and
minimization of the memory footprint for exploiting event-level parallelism.
We discuss its design features and impact on the existing API and user-interface of Geant4.
Revisions are made to balance the need for preserving backwards compatibility and to
consolidate and improve the interfaces; taking into account requirements from the multi-
threaded extensions and from the evolution of the data processing models of the LHC
experiments.

1. Introduction
The new release of Geant4 [1] planned for 2013 is going to be the first major release of the simulation
toolkit since 2007. Release 10.0 will incorporate many changes in almost all areas, included an
evolved API for allowing efficient execution of simulation programs on modern parallel architectures,
exploiting multi-threading with parallelisation at event level. Particular care has been taken in
designing the system, in order to allow for preserving backwards compatibility with user’s code
traditionally running in sequential mode. We report on the main features, which characterizes multi-
threading for event-level parallelism by illustrating the main design principles and choices made,
together with the measurements performed on different hardware architectures for performance and
scalability over the number of worker threads.
We are also going to review a selection of important features, which will be provided with the new
release, not covering developments in the physics modules, which in any case represent a relevant part
of the features characterising the new release [2] [3].

2. Multi-threading
The first public release of a Geant4-MT prototype was made in 2011, based on a study initiated in
2009, where different event-parallelism techniques (multi-processing with or without copy-on-write)

1 CERN, PH Department.

have been studied and compared [4]. The first prototype has served as proof of principle for the
introduction of multi-threading in the Geant4 code and for identifying the subset of C++ classes to
review for thread-safety, performing first-level testing on selected benchmarks. A new version of the
prototype was delivered in 2012, based on release 9.5 of Geant4, establishing the basis for the
integration of the new features to the main code base. Significant re-engineering of the prototype took
place in order to incorporate it into the main Geant4 development line, which took place in early 2013
and resulting in the 10.0-beta release, deployed last June.

2.1. Design principles
As a Monte Carlo simulation toolkit, Geant4 profits from improved throughput via parallelism derived
from independence among modeled events and their computation. Geant4 release 10 allows the
generation of events in parallel, by defining a number of threads available in the system as
independent worker units, which get their internal state initialized by a master thread, including the
initial random seed for their internal random generator. Each worker thread will then compete for the
generation of the next event and perform the computation independently (figure 1)

Figure 1. Each worker thread performs
independently, by accessing to shared
data (geometry description, physics data
and configurations, etc,); a thread gets
initialised in its internal state by a master
thread, which provides per-event initial
random seeds prepared in a queue; threads
will then compete for the next event to be
processed, filling their internal structures
for hits/digits; final results can be finally
merged at the end of the run.

Worker threads are accessing shared data for the geometry description, physics quantities and
configurations without violating thread safety. This has been made possible by having carefully
identified the sharable objects and, for each of them, having determined which member fields are
supposed to be read-only after the worker threads have been spawned. Instances of such objects will
be shared among threads; however some of the data fields, which are not invariant during the event-
loop, are transformed to thread-private. This is done by defining such objects as split-classes, for
which the data to be considered as thread-private has been encapsulated in dedicated container classes.
These data are then organised in a thread-local storage [5] array by a single dedicated static manager.
Such technique allows in addition to considerably reduce the memory footprint required for the
spawning of new threads, contributing to improve memory locality.
The system has been designed to make use of the POSIX threads standard, in order to ensure long-
term maintainability of the code and allow for the possibility to evolve it to newly emerging

technologies. This facilitates the integration of Geant4 within external frameworks wishing to adopt
specific parallelization solutions, based either on MPI or Intel®-TBB (Threading Building Blocks™).
The use of locks for mutual exclusion (mutex) of threads has been reduced to the minimum and
restricted to non-critical areas of the code; this has allowed to keep under control the scalability of the
performance in function of the number of threads used in computation, achieving excellent results.

2.2. Porting of user’s applications to multi-threading
Special care has been taken in designing the final API for allowing applications to exploit event-level
parallelism and assure thread-safety. Backwards compatibility is guaranteed when using the old
interfaces for running simulation in sequential mode. The criterion we adopted in designing the new
API was that the extra effort required for porting an existing application to multi-threading should be
minimal, in any case a small fraction of the total development effort required for developing that
application. We expect that for a simple or standalone Geant4 application, the time required to
complete a first port should not exceed a few hours effort.
In order to port a Geant4 application to multi-threading, it is required to inspect and potentially adapt a
small set of classes under the responsibility of the application developer. In addition to replace the
sequential G4RunManager with the multi-threading capable one G4MTRunManager in the main
program, the key step is to create separate instances for each thread of the sensitive detectors, i.e. the
user’s classes including the relevant code for the generation of the hits, or products of the simulation.
A new method CreateSDandField is now provided; the corresponding part of the detector
construction code should be now provided in this method, which will be called by the kernel for each
thread initialization. The same method also comes with a generic signature, and can be used in
complex applications, like those involving external frameworks as alternative for looping over all the
relevant volumes and invoke cloning of the sensitive detectors themselves. Framework and application
developers can choose between implementing the Clone method for their sensitive detectors or
refactoring their DetectorConstruction code to implement the relevant CreateSDandField
method.
A revision of all those classes (user actions) where the internal state of the simulation is handled and
customized is necessary, in particular if inter-dependencies between these classes are present. A new
class G4VUserActionInitialization has been introduced for the user to instantiate the user
actions classes (either mandatory and optional), and allow for clearly separate those actions which are
associated to a worker thread from those associated to a run and therefore handled by
G4UserRunAction.
At the end of the application run, Geant4 can automatically apply reductions of the produced results, if
the default built-in scoring and hits recording capabilities are used; histograms can also be
automatically merged when using the built-in analysis module [6]. It is however a choice left to the
application developer the way to handle the output, either collecting it into separate files (one per
thread), or interleaved as parts of one or more output files. Depending on the application complexity,
the handling of the output stream must be carefully evaluated in order to reduce the overhead coming
from I/O operations.

2.3. Physics validation and performance measurements
Since the first day the code base was migrated to multi-threading, the overall physics and CPU
performance have been regularly monitored, by comparing the sequential version of the code to a
multi-threaded equivalent. We refer here to the most recent measurements made to date, based on the
development code base of September 2013. The applications chosen are in the High Energy Physics
domain, in order to exercise reasonably complex physics configurations and realistic geometrical
setups: a Simplified Calorimeter test suite, allowing for studying a big variety of primary species on a

wide energy range [7], and a realistic geometry description of the CMS experiment at LHC [8]
(FullCMS benchmark) imported from a GDML [9] file.
Physics calculations made with the multi-threaded version are compared and verified to be exactly the
same as those obtained in the sequential case. A first test has been made to verify that statistical
agreement is reached for relevant physics observables (energy spectrum, longitudinal and transverse
shower profile in the calorimeter). A second more stringent test is made comparing the history of the
random number engine, to verify that same status is reached at the end of an event generated in
sequential mode and in multi-threading mode on a specific thread, given the same initial seed. Perfect
event reproducibility could be achieved for most physics configurations, which have been verified.
CPU measurements made on the realistic geometry setup from the CMS experiment [8], with different
physics configurations, reveal excellent linearity of the speedup versus the used number of threads,
obtained on different systems equipped with either AMD of Intel® chips. The results for one worker
thread compared to the same sequential application show a minimal overhead of 1%, while the
speedup is linear with efficiencies higher than 94%. The memory saving is excellent; by running
Geant4 in multi-threaded mode, an application like the FullCMS benchmark with k threads requires
about half of the memory needed for running k clones of the sequential version of the same
application. The per-thread memory overhead is at the level of 40-80 MB depending on the
application.
Good efficiency and linearity of performance versus the number of threads are also confirmed when
running on the relatively cheap Exynos 4412 Prime quad-core Cortex-A9 chip.
Finally, a test made of the same realistic geometry setup has been performed on one Intel® Xeon
Phi™ co-processor card, featuring 61 cores (4-way hyper-threading) and 16 GB memory, confirming
good scalability and memory use up to the maximum allowed of 244 threads (figure 2).

Figure 2. Measurement of the total
speedup obtained by running full
physics (FullCMS benchmark, 50 GeV
pions with B-field turned on) on the
Intel® Xeon Phi™ (7110P, 1.238 GHz,
61 cores) co-processor, up to the
maximum number of threads. Geant4
multi-threaded efficiently uses hyper-
threading [10], although no explicit use
of the built-in vector units is made.

3. Geometry
The geometry modeler in Geant4 is also evolving in several areas. Key classes have been reviewed to
become thread-safe for event-level parallelism; in addition, several new features have been introduced
and some obsolete code, which was deprecated in release 9.6, has been removed.
All built-in UI commands for detecting geometrical volumes overlaps have been revisited and re-
implemented to make use of the capability of precisely determine location of points on volume’s
surfaces and inspect for overlaps in the geometrical hierarchy of the placed volumes. These include the
possibility to tune the resolution of the test by defining the number of points to generate, or the
maximum number of errors to report for a certain volume, or set a tolerance for the extent of the
overlap to report, or set limits for depth and number of levels in the geometrical hierarchy.
Navigation in the geometry tree is now adopting a more precise evaluation of the geometrical safety,
which is no longer approximated or limited by the voxels’ boundaries, as used to happen in the past.
This enhancement, coming at zero CPU penalty, will be important in future in particular for
electromagnetic processes to better treat physics effects close to volume’s boundaries.
A new set of geometrical primitives (solids) is being introduced; it will be possible to use them as
alternative to the existing traditional primitives, as part of an optional component extracted from the
AIDA [11] Unified Solids Library [12] and included in addition to the current solids modules. The
new library is going to provide improved implementations for most traditional shapes, in particular for
those (tessellated solid, polycone, polyhedra or Boolean union) where an innovative spatial
optimization technique could be applied for the efficient detection of the components candidates for
intersection. The new library will include the current state-of-the-art of the implementation, including
all the new primitives currently available (figure 3).

Figure 3. The set of geometrical
primitives currently composing the
new AIDA Unified Solids Library:
box, orb, sphere (+sphere section),
tube (+cylindrical section), cone
(+conical section), simple, generic
& arbitrary trapezoid, tetrahedron,
polycone, polyhedra, extruded
solid, tessellated solid and new
Multi-Union structure.

4. Event biasing
There is a class of applications for which a standard (analogue), simulation is at least inefficient, or
even not practicable; this is the class where rare events are the ones of interest.
The estimation of shielding efficiency in radioprotection is one of these examples: an analogue
simulation would spend most of the time in transporting particles and interaction products inside the
shield, leading to a tiny fraction leaving the shield. In this case, particles leaving the shield are the
"rare events". Very thin detectors may be difficult to simulate as well, as only a small fraction of
particles may interact inside the volume. Another example is the case of a volume of interest very
small compared to the overall structure in which the simulation is to be carried out, like the case of the
simulation of single event upset in a small electronic chips inside the large structure of a satellite. In
such a case, the events of interest depositing in the chip are rare given they can occur in a fraction of
time proportional to the size of the electronic chip volume versus the overall satellite volume.
In such rare events simulation problems, it is possible to boost the simulation efficiency without
sacrificing the physics quality provided by a full detailed Monte-Carlo description, by magnifying the
occurrence of the rare event [13]. This is the main purpose of event biasing techniques. There are two
main classes of event biasing techniques: splitting (killing) and importance sampling. In the first case,
tracks are split (killed) as long as they approach (recede from) the phase space region of interest: a
typical use case is the shielding problem; the shield volume is artificially divided into slices on the
boundaries of which particles are cloned (killed with some probability) if they fly towards (opposite
to) the direction of the shield exit; this artificial flux regeneration compensates for the physical
absorption while penetrating the volume of the shield. In importance sampling, the underneath
physical interaction laws are substituted with biased ones that favour the occurrence of rare events.
The thin detector volume case can be treated this way [14]: the natural exponential law is replaced by
a truncated exponential one, whose extension is limited to the track path inside the volume, to
guarantee that the collision will occur. Many other techniques exist [14]. Whatever technique is
adopted, a statistical weight is computed at each step a biasing is applied; this weight is used to
counter-balance for the application of the biased simulation when computing the desired quantities.
Geant4 already provides a number of biasing techniques splitting-based with geometry importance
(Bremsstrahlung splitting in electromagnetic or importance sampling based on general particle source
biasing [15], or in the advanced technique of the reverse Monte Carlo [16]), but we’re missing
importance sampling techniques in which the physics processes are biased, either in their interaction
probability, or in their final state generation (energy/angular biasing). Such techniques includes the
force collision [14], the exponential transform [14], [17] for what concerns the biasing of interaction
laws, and techniques like DXTRAN [14] (forcing of scattering inside some solid angle), which involve
final state biasing.
A new development is going to provide interface classes to allow for the implementation of virtually
any kind of biasing techniques. The approach considers that biasing is applied in some volumes, user
selected, outside of which the analogue tracking goes, and inside which a large freedom is to be given
to the user to apply techniques the most suited to the application needs.
The scheme has been prototyped for now, and will be delivered with release 10.0.

5. Visualization
Geant4 release 10.0 sees two key improvements in visualization: in addition to the support for
multithreading it is also added the ability to produce OpenGL EPS graphics in the absence of a
hardware graphics card.
Multithreading poses a challenge for Geant4 for those visualization drivers [18] that incorporate a
direct (rather than file-mediated) connection from Geant4 to some other technology. The most notable
case of such connection are in Geant4's flagship visualization drivers, the OpenGL family (including
the direct mode, OGLX), the display-list mode, OGLS, the OpenInventor-wrapped mode, OIX and the
Qt-wrapped mode, OGLQt (figure 4). Other examples include the socket-connected forms of the

DAWN [19] and VRML drivers. The use case we are supporting is one of a single graphics window
that shows events from any of the worker threads (we considered also the case of having a separate
graphics window for each worker thread, but found this to be not of no interest to users aside from as
some sort of multi-threading demo). The challenge is that while we must create a single graphics
driver in a main thread, the events we want to represent are, by default, only present in the worker
threads. While it may be possible to eventually drive some systems, such as OpenGL, by starting the
visualization from the main thread and then contributing additional graphics objects from the worker
threads, such "context switching" as OpenGL calls it involves a great deal of subtlety. Any solution
developed at that driver-specific level would have to be separately replicated, with different
technology, for the other direct drivers (DAWN, VRML). We have instead opted to use an "event
keeping" strategy, with events copied from worker threads to the master thread, so that drawing of the
event can always be handled at the single master thread. As of this writing, this master thread solution
is in place, while additional work is under way for release 10.0 or 10.1 to resolve a limitation of the
current solution. In the current solution, no events can be drawn until all of the worker threads
complete their function. For cases in which event simulation takes much less time than visualization,
this solution is fine, but for some other cases, such as visualization of LHC's complex events, event
simulation is slow compared to visualization, and we would rather not have to wait for all simulation
to cease before we begin visualizing results. To this end, we are attempting to move all visualization to
a dedicated "visualization management thread". This thread will start when visualization is first
instantiated, doing the initial geometry drawing, then loop, watching the master thread's saved event
queue, drawing events as fast as possible when they become available on that queue.

Figure 4. OpenGL schene rendered
in Qt-wrapped mode (OGLQt), the
recommended visualization driver,
set as the default.

OpenGL graphics in the absence of a GL graphics card has been a goal of Geant4 visualization for
several years as our OpenGL drivers have moved from being used mainly for live display to also
become our most popular vector graphics file generator (thanks to the "print to EPS" function that is
available from GL cards and accessed from a Geant4's visualization command). EPS graphics has
been available in Geant4 since the first years of the toolkit, through the DAWN visualization system,
but the GL extension was the first to provide such graphics directly from Geant4, rather than through
an external graphics application. A limitation was that our GL solution relied on hardware, the
OpenGL graphics card that is often not present on cluster, cloud or grid servers. Geant4 Release 10.0
adds a hardware-free alternative, thanks to the XVFB library (X11 Virtual Frame Buffer) [20].
Developments are also on going to allow for visualization of a Geant4 application through a web
browser [21].

6. Conclusions
Geant4 Release 10.0, the next major release of the Geant4 simulation toolkit is going to be a big step
forward in the evolution of the Geant4 software and the capabilities any user will have chance to
experience. A key feature will be the possibility to exploit event-level parallelism thanks to the multi-
threading extensions now built-in. Measurements performed on different hardware architectures
capable of hyper-threading or not, have revealed excellent linearity of throughput speedup of the order
of 94% and reduced memory footprint per-thread, with good results also when running in hyper-
threading regime. Many new features and enhancements are affecting nearly all areas, included the
physics, which is not covered in this paper.

7. References

[1] Agostinelli S et al., 2003 Nuclear Instruments and Methods in Physics Research A506, 250-303;

Allison J et al 2006 IEEE Transactions on Nuclear Science 53 No. 1 270-278
[2] Ivantchenko V et al., 2013 Geant4 Electromagnetic Physics for LHC Upgrade, Proceedings

CHEP-2013, Amsterdam
[3] Pokorski W et al., 2013 Recent Developments in the Geant4 Hadronic Framework, Proceedings

CHEP-2013, Amsterdam
[4] Dong X et al., 2010 Lecture Notes in Computer Science, Springer Berlin Heidelberg, volume

6272, p.287-303; Dong X et al 2012 J. Phys.: Conf. Ser. 396 052029
[5] Crowl L, 2006 Thread Local Storage, http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2006/n1966.html
[6] Hrivnacova I et al., 2013 Integration of g4tools in Geant4, Proceedings CHEP-2013,

Amsterdam
[7] Dotti A et al., 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference

(NSS/MIC), p.2128-2134
[8] CMS Collaboration, 2008 Journal of Instrumentation, 3, S08004, 187
[9] Chytracek R et al., 2006 IEEE Transactions on Nuclear Science, Vol. 53, Issue: 5, Part 2, 2892-

2896
[10] Leng T et al., 2002 A Study of Hyper-Threading in High-Performance Computing Clusters, Dell

Power Solutions
[11] AIDA project web site: http://cern.ch/aida/
[12] Gayer M et al., 2012 Journal of Physics: Conference Series 396, 052029
[13] Rubin R et al., 2009 Rare Event Simulation using Monte Carlo Methods, John Wiler & Sons

Ltd., ISBN 978-0-470-77269-0
[14] MCNP – A General Monte Carlo N-Particle Transport Code, Version 5: http://mcnp.lanl.gov
[15] General Particle Source: http://reat.space.qinetiq.com/gps/
[16] Lei F et al., 2010 Nuclear Instruments and Methods in Physics Research A621, Issues 1–3,

p.247–257
[17] Mendenhall M H et al., 2011 A Probability-conserving cross-section biasing mechanism for

variance reduction in Monte Carlo particle transport calculation, arXiv:1109.0910
[18] Allison J et al., 2013 International Journal of Modeling, Simulation, and Scientific Computing,

4, Suppl. 1 1340001
[19] Tanaka S et al., 1997 DAWN for Geant4 visualization, Proceedings CHEP-97, Berlin
[20] XVFB – Virtual Frame Buffer X Server for X Version 11:

http://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
[21] Garnier L et al., 2013 Geant4 application in a Web browser, Proceedings CHEP-2013,

Amsterdam

