
Factory mechanism for instantiation of cross sectionsReproducibility of simulated events

Geant4 is the main simulation toolkit used by the LHC experiments and therefore a lot of effort is put into improving the physics models in order for them to have more predictive power. As a consequence,
the code complexity increases, which requires constant improvements and optimizations on the programming side. In this poster, we discuss the recent developments and improvements in the hadronic
framework of the Geant4 simulation toolkit.

Generic Physics List

Multi-Threading in Geant4 hadronic physics

Sources of irreproducibility:

- bugs (uninitialized variables)

- history-dependent approximations

- incorrect caching

Non-reproducibility fixes for G4 9.6
Up to now eleven non-reproducibility fixes have been made.

Now Geant4 events are reproducible (with the exception of neutron
HP).

 Chips quasi-elastic

 Starkov elastic final state model for π± > 1 GeV

 Ion ionization corrections

 Fission in Bertini intra-nuclear cascade

 Bertini intra-nuclear cascade, when hyperons are involved (it
turned out a problem in G4PhaseSpaceDecayChannel)

 (Decoupled) Chips hadron-nucleon inelastic cross sections,
used by FTFP (2 different problems)

 Multiple scattering (3 different problems)

 Binary intra-nuclear cascade

 Event _1 Event _2 Event _3 Event _4 Event _5
random
number
seed_1

random
number
seed_2

random
number
seed_3

random
number
seed_4

random
number
seed_5

Run_1

 Event _1 Event _2 Event _3 Event _4 Event _5
random
number
seed_1

random
number
seed_2

random
number
seed_3

random
number
seed_4

random
number
seed_5

Run_2

Run level
reproducibility

 Event _3 Event _4 Event _5
random
number
seed_3

random
number
seed_4

random
number
seed_5

Run_3

Event level
reproducibility

σ(E)Ei<E1<Ei+1
 cached σi to cache values for energy

bins, a fixed energy (middle
of the bin, for instance)
should be used

Ei<E2<Ei+1
σi

σ((Ei+Ei+1)/2)
 cached σi

Ei<E1<Ei+1

Ei<E2<Ei+1
σi

σ(Z,average(A))
 cached σ(Z)

element1
(Z, A1)

element2
(Z, A2)

σ(Z)

σ(Z,A1)element1
(Z, A1)

 cached σ(Z)
element2
(Z, A2)

σ(Z)

to cache values for
elements, a fixed atomic
number (average natural
composition, for instance)
should be used

Recent Developments in the Geant4 Hadronic Framework
Witold Pokorski (CERN), Alberto Ribon (CERN)

To share cross-section objects between different ‘users’ (physics processes, models,
physics lists, etc) we have introduced the factory pattern for the instantiation of the
objects and we have extended the functionality of G4CrossSectionDataSetRegistry to
store and to provide the pointer to those objects.

➡ ‘Cross-section user’ asks G4CrossSectionsDataSetRegistry for a given
G4CrossSectionDataSet by specifying its name (string).

➡ The registry checks if this cross-section has been already instantiated.

➡ If yes, it returns the pointer to it (shared between all ‘cross-section users’).

➡ If not, the registry uses the factory to instantiate the given cross-section. If the
factory does not exist, it return an error ‘cross-section not found’.

register

G4CrossSectionDataSetRegistry

GetCrossSectionDataSet(XS_name)

Cross Section
pointer

G4CrossSectionFactoryRegistry

Cross-sections library

Cross section
‘users’ (physics list,
physics models)

CrossSection

factory

Static factory registration
called when the library is
loaded.

Singleton

Using pseudo-random number generator implies that events should be reproducible. Non-reproducibility of
events makes it difficult to debug the code. Simulation results should be reproducible not only at the level
of the run (starting from the same random-number generator seed), but also at the level of each event
(starting from any event within a run).

FTFP_BERT.mac:
/PhysicsList/defaultCutValue 0.7
/PhysicsList/SetVerboseLevel 1

/PhysicsList/RegisterPhysics G4EmStandardPhysics
/PhysicsList/RegisterPhysics G4EmExtraBertiniPhysics
/PhysicsList/RegisterPhysics G4DecayPhysics
/PhysicsList/RegisterPhysics G4HadronElasticPhysics
/PhysicsList/RegisterPhysics HadronPhysicsFTFP_BERT
/PhysicsList/RegisterPhysics G4BertiniAndFritiofStoppingPhysics
/PhysicsList/RegisterPhysics G4IonFTFPBinaryCascadePhysics
/PhysicsList/RegisterPhysics G4NeutronTrackingCut

‣ create

 vector<string> MyPhysicsConstructors
containing names of the physics constructor

‣ instantiate generic physics list
 new GenericPhysicsList(MyPhysicsConstructors)
where this constructor iterates over the physics constructors
names and registers them

physics constructors
Factory

G4PhysicsConstructorsRegistry

automatic registration of factory while loading the
physics constructors library

Physics Lists can now be constructed in two new ways:

➡ through G4GenericPhysicsList class using a macro file:

The Generic Physics list class allows to remove the compile- and link-time
dependency between the users code and the specific physics models. In order to
achieve this we have:
➡ introduced registry of physics “constructors”
➡ instrumented physics “constructors” to provide factories that get registered in the
registry

G4GenericPhysicsList
PhysicsConstructorsPhysicsConstructorsPhysicsConstructorsPhysicsConstructorsPhysicsConstructorsPhysicsConstructorsphysics constructors

macro file
(configuration)

G4PhysicsConstructorsRegistry

➡ by passing a vector of physics ‘constructors’ names at the instantiation time

G4GenericPhysicsList
PhysicsConstructorsPhysicsConstructorsPhysicsConstructorsPhysicsConstructorsPhysicsConstructorsPhysicsConstructorsPhysicsConstructors

new vector<string> MyPhysicsConstructors

new G4GenericPhysicsList(MyPhysicsConstructors)

G4PhysicsConstructorsRegistry

phys = new GenericPhysicsList();
G4UImanager* UImanager = G4UImanager::GetUIpointer();

UImanager->ApplyCommand("/control/execute
FTFP_BERT.mac");

and the main() containing:

Use of fast mathematical functions
Precision of hadronic cross sections is at the level of
5-10% and therefore there is no need to do high-precision
calculations involving those cross-sections. Using fast log
and exp functions can increase significantly the CPU
performance without any significant lost in the precision of
the simulation results. We have replaced the std::log and
std::exp by faster implementation extracted from VDT
library (see Danilo Piparo talk at CHEP 2013). The effect
is much below the precision of the cross-sections, while
the calculation of the cross-sections values was faster by
~5%.

The Geant4 code is undergoing a major development in order to run in the multi-threading mode. A number
of technical issues needs to be addressed to eliminate any interference between several threads accessing
the hadronic physics classes. Objects that can be easily shared are those that are read only.
Caching becomes tricky because of possible simultaneous write access to cache.
In order to validate the multi-threaded code we require that the calorimeter (and other) observables remain
statically the same between sequential and multi-threaded modes.

Multi-threading increases significantly the event throughput,
however the challenge is the reproducibility of events. After a
number of fixes and improvements, full reproducibility has been
achieved.

Results for FTFP_BERT physics list:
● ~9% reproducibility violations in G4 10.0.beta
– Found a problem (cached value) in G4MuPairProductionModel
● ~0.1% reproducibility violations in G4 9.6.ref07
– Found thread-collision problem (cache shared among threads) in Bertini
● ~7% reproducibility violations in G4 9.6.ref08
– Found problems in G4MuPairProductionModel
● 0% reproducibility violations in G4 9.6.ref08 + fixes in muon physics
=> Full reproducibility (sequential & MT) achieved

