
Ian Bird

Grid Deployment Board

CERN, 12th February 2014

15 Nov 2013 Ian.Bird@cern.ch 1

15 Nov 2013 Ian.Bird@cern.ch 2

Main Software Requirements

✤ The software being developed by the LHC experiments must
cope with the unprecedented conditions and challenges that
characterizes these experiments (trigger rate, data volumes,
etc.)
✤ The software should not become the limiting factor for the trigger,

detector performance and physics reach for these experiments

✤ In spite of its complexity it should be easy-to-use
✤ Each one of the ~ 4000 LHC physicists (including people from

remote/isolated countries, physicists who have built the detectors,
software-old-fashioned senior physicists) should be able to run the
software, modify part of it (reconstruction, ...), analyze the data,
extract physics results

✤ Users demand simplicity (i.e. hiding complexity) and stability

✤ Performance and Efficiency came much later

3

Performance is now a Limiting Factor

✤ The LHC software (trigger, simulation, reconstruction, analysis) was
ready at the start of the LHC operation being able to deliver the
exceptional physics results that we know

✤ Experiments have invested very heavily to improve algorithms and
keep memory size and CPU performance matching existing
resources

✤ E.g. CMS reconstruction

✤ There is the general opinion that with
more computing resources or more
optimal software we could do
even more and better physics

✤ Computing resources will
not scale to a post-LS1 scenario

✤ 140 Pileup Events, 25ns

✤ We need to radically evolve experimental software

4

CMS Reconstruction

CPU Technology Trends

✤ Until ~2004 we have had an easy
life in HEP software and computing
✤ Year after year up to 2x increase in computing

capacity thanks to the #transistor/chip (Moore’s
law) and higher clock frequencies

✤ The same program that in year 1995 needed
10 seconds, would need 1 second in 2002

✤ The “easy life” is now over
✤ The available transistors are used for

adding new CPU cores while keeping the
clock frequency basically constant thus limiting the power
consumption

✤ We need to introduce parallelism into applications to fully
exploit the continuing exponential CPU throughput gains

5

© 2009 Herb Sutter

http://www.gotw.ca/copyright.htm

6

The Eight dimensions

✤ The “dimensions of performance”
✤ Vectors

✤ Instruction Pipelining

✤ Instruction Level Parallelism (ILP)

✤ Hardware threading

✤ Clock frequency

✤ Multi-core

✤ Multi-socket

✤ Multi-node

Possibly running different

jobs as we do now is the

best solution

}
Gain in memory footprint

and time-to-solution

but not in throughput

Very little gain to be

expected and no action to

be taken

Micro-parallelism: gain

in throughput and

in time-to-solution

Prospects for HEP Software

✤ Potential gains can be made by exploiting features of
today’s CPUs’ micro architecture
✤ by making use of vector registers, instruction pipelining, multiple

instructions per cycle

✤ by improving data and code locality and making use of hardware
threading

✤ New architectures to off-load large computations to
accelerators (GPGPUs, Intel MIC) or the new integrated
architectures with heterogenous processors (AMD)
✤ specific memory models will force explicit memory programming

✤ new programming languages (Cuda, OpenCL, etc.)

7

Why Micro-Parallelism?

✤ To exploit full potential of new architectures will have to
make use of the other performance dimensions, such as
vector instructions (SIMD), instruction level parallelism (ILP)

✤ the only realistic potential gain in throughput

✤ effective use of vector instructions is essential in order to make full
use of current CPUs

✤ if we can gain from SIMD instructions, code is also better prepared for
accelerators (GPUs, Intel-Phi, ...)

✤ Independent of Multi-Threading

✤ a multi-threaded application may or not use vector instructions

✤ Optimization suited for individual algorithms or libraries

✤ e.g. VDT (math functions)

✤ Much stronger requirements on properly designed data
structures and uniformity of computations

10

Paradigm Shift

✤ Most of the scientific software and algorithms was designed for sequential
processor in use for many decades and will require significant re-
engineering

✤ Migrating sequential applications to multi-threaded is highly non-trivial

✤ Difficult to develop: we not only need to code what needs to be done but also how this is
done in parallel

✤ Difficult to debug: nasty data race conditions will be difficult to reproduce, and so to fix.

✤ Difficult to maintain: latent threading bugs may take years to be visible.

✤ The community needs to develop expertise in concurrent programming

✤ Similarly to the OOP migration, training will be eagerly needed

✤ As for the case of major software evolutions such as the migration to OOP,
the main final benefit is often not the initial naive selling argument

✤ OOP was sold as faster computing while in fact is not, but is the only way we can cope
with the unprecedented complexity of today’s applications

✤ Multiple threads is not an optimization. Using multiple threads will make your workload
complete faster only if you have multiple processors and they are underused. The total
amount of work typically grows because of the threading overhead.

11

The Challenge for HEP

✤ Concrete algorithms can be run in parallel by making use of threads but
integrating them to run in a single application is highly non-trivial

✤ It will require new levels of expertise that need to be acquired by the
community

✤ Tasks will involve a major re-engineering of frameworks, data structures
and algorithms e.g.

✤ making code thread-safe to exploit multi-threading

✤ developing new framework services for scheduling parallel execution of threads on all
available cores

✤ targeting libraries/toolkits where the biggest impact can be achieved e.g. GEANT

✤ Making changes in the code of running experiments must be done
gradually whilst preserving the correctness of the physics output

✤ A fast response is needed since technology is evolving quickly

✤ At the LHC, LS1 provides a window of opportunity for introducing first changes

✤ The scale of the changes requires a very large effort to be invested

12

Initiatives taken so far

✤ The adoption of a collective response will help to meet
the challenges using available expertise and resources
and within the required timescale
✤ Initial workshop at Fermilab with many experiments represented

(LHC and others)

✤ A Concurrency Forum was established 2 years ago, with
the aim of :
✤ sharing knowledge amongst the whole community
✤ forming a consensus on the best concurrent programming models

and on technology choices
✤ developing and adopting common solutions
✤ The forum meets bi-weekly and there has been an active and

growing participation involving many different laboratories and
experiment collaborations

✤ An R&D programme of work was started on a number
of demonstrators for exercising different capabilities,
with clear deliverables and goals

13

14

15 Nov 2013 Ian.Bird@cern.ch 15

15 Nov 2013 Ian.Bird@cern.ch 16

15 Nov 2013 Ian.Bird@cern.ch 17

15 Nov 2013 Ian.Bird@cern.ch 18

15 Nov 2013 Ian.Bird@cern.ch 19

New Initiative - Software Collaboration

 Ideas were been discussed in the preparation

of the Computing Model Update

 Discussions took place in December with

CERN management

 Director of Research and IT and PH departments

 Agreed that initially should focus on HEP

community

 But always with the intention to work with other

scientific and industrial partners where interested

20

HEP Software Collaboration

 Goal
 To build and maintain advanced scientific libraries

and tools of general interest

 Facilitate engagement with other scientific and
industrial partners

 Initially the HEP community
 Discussing with all HEP labs, software projects,

experiments, etc.

 Make it Open – to enable engagement with
others

15 Nov 2013 Ian.Bird@cern.ch 21

Proposal

 Establish a collaboration to develop open scientific software
packages guaranteed to work together
 Includes frameworks to help assemble full applications in various

domains

 Features
 Build on work in concurrency forum

 Formality provides framework for increasing collaboration, attracting
experts from HEP and elsewhere

 A means to provide recognition, give credit

 Can build coherent proposals for funding from national and
international funding agencies; engagement with industry

 Publish roadmaps and priorities – helps potential collaborators see
where they may contribute, but also ensures delivery of important
developments

 Establish a team of experts to provide consultancy and help in
optimisation, debugging, etc.

 Assumes high degree of commonality in the core software of the
experiments – libraries, frameworks, tools

15 Nov 2013 Ian.Bird@cern.ch 22

Structure

 Formal collaboration with an agreed governance
model
 has worked successfully in other domains (WLCG)

 equal partners who all can receive recognition

 can provide a framework for elaborating proposals for
acquiring resources

o EU – Horizon 2020

o US - NSF/DOE (increase scope of core software activities)

 Organise activities in work packages
 R&D studies

 development infrastructure (tools etc.)

 computing infrastructure (TechLab)

 task forces to assist collaborations in ‘software
campaigns’

15 Nov 2013 Ian.Bird@cern.ch 23

Software Collaboration – 3

 Currently discussing with partners in other HEP
labs with core software teams
 inviting comments, suggestions and to share

ownership of initiative

 Organised a 1½ day meeting to discuss details
 Attached to the Concurrency Forum Workshop (April

3,4)

 Suggestion to hold follow-up meeting in US
later in year
 finalise governance model

 possibly invite US funding agencies to send
representatives

24

