

Fast Benchmark

Michele Michelotto – INFN Padova Manfred Alef – GridKa Karlsruhe

INFN

Fast Benchmark

- Request mainly from WLCG community via machine/job task force to recommend a fast benchmark to estimate the performance of the provided job slots, since some sites don't disclose performance scores or hardware details
- Requirements clear
 - Open source
 - Easy to run
 - Fast (few minutes)
 - Small, no download (apart from first download)
- Requirement not clear
 - Reproducible? Reliable?
 - Single core or multicore?
- Use Cases
 - Run everytime we land on a queue/VM/Cloud machine?
 - Run to sample the resources available?
 - Run to crosscheck is the HS06 declared are reliable?

An example with Geant4

- ▶ Thanks to G.Cosmo and A.Dotti
- Based on Geant4
 - Runs on linux x86-64 and ARM
 - realist description of the geometry of the detector
 - ▶ footprint 1/3 to 1/4 of real experiment
 - No digitization, no analysis.
 - Cpu bound, no I/O
- Download a bootstrap.sh script from Cern
- Running the script download the rest of the program and compile (5 – 10 minutes)
- ./run.sh <numThreads> <numEvents>

Single core

Events/second

Seconds/Event

Multicore

- We have 32 Logical CPU
 - I'm forced to use to wall clock time from the shell instead of the Real Time computed
 - Now it takes more time to a steady number

Variance

Xeon E5-2660 16C / 32Lcpu

- I6 thread in parallel, I0Kevts, about 20 minutes
- Average Wall clock time 1077 Stdev.S = 58
- Average User time16498 seconds
- Stdev.S = 976

Wall Clock Time

User Time

User time / Wall Clock time < 16

User/Wall Clock

LHCB fast benchmark

New contact with P.Charpentier (LHCB) provided by Manfred Alef

Manfred is investigating this tool

HS14 update from Manfred Alef

- HS06 based on widely used, industry standard, SPEC CPU 2006
 - SPEC is shipping well tested tools, on several architectures, professionally maintained
 - Very stable: 3 minor version in 8 years
 - Hardware vendors and technical press are familiar with it
 - Widely adopted in GRID, WLCG and also other scientific communities

Next version coming soon

- Benchmark tests need to be revised to reflect improvements of hardware
- SPEC is working on the next revision of CPU intensive benchmark suite currently designated as CPUv6
 - ▶ after original specmark, SPEC92, SPEC CPU95, SPEC CPU2000, SPEC CPU 2006, this will be the 6th version.
- KIT is an SPEC OSG associate and had the CPUv6 in beta (closed source, no permission to redistribute)
- GridKa will provide a config file to run the benchmark on SL and GNU
 - CPUv6 is running with SL6 default compiler gcc-4.4.7 but not all the tests
 - however SL7 is coming with gcc-4.8.2
 - Using gcc-4.9.0 all the tests compile

