

Secure Hybrid Cloud Infrastructure for Scientific Applications

Project Members:

Paula Eerola

Lirim Osmani

Miika Komu

Sasu Tarkoma

Matti Kortelainen

Salman Toor (Presenter) salman.toor@helsinki.fi

Tomas Lindén

John White

DII-HEP project

Datacenter Indirection Infrastructure for Secure HEP Data Analysis

- Collaboration between
 - Helsinki Institute of Physics (HIP)
 - Computer Science Department, University of Helsinki
- Funded by Academy of Finland 2012 2014

Goals of the project

 Explore the latest software stacks for distributed computing infrastructures

 Construct a secure and scalable setup for scientific applications

 Use the CMS analysis and production framework as a test case

Initial setup

- Jade 768 cores main ARC CE, shared by CMS and ALICE
 - Madhatter dCache Storage Element connected to Jade
- Alcyone 892 cores ARC CE, shared resource,
 10 km from Jade
- Korundi 400 cores ARC CE, shared resource,
 10 km from Jade

Cloud based setup

- We have a production site based on private cloud setup
 - OpenStack (Folsom → Icehouse)
 - Gluster Filesystem
 - Advanced Resource Connector (ARC) middleware for providing grid interfaces
 - CERN VM File System (CVMFS)
 - OpenStack deployed on Ubuntu 12.04 LTS
 - VMs based on Scientic Linux CERN 6.4

System architecture

VMs Ba	sed Services	1 CE, 50 WN and 6	Gluster-brick							
	er Bricks	Gluster Head Node	A-Rex, Computing Element (CE)							
Gluste		Volume mirror	Worker Nodes (WN)	Worker Nodes (WN)						
OpenStack Cloud Components 1 Controller, 25 Compute, 1 Neutron, 1 Keystone, 1 Glance and 4 Cinder servers.										
Keys	tone	c	Cloud Controller							
Gla	nce	Cinder	Neutron	npute Compute						
Gluster File System 4 Gluster-brick, total storage 2TB, 1 Gluster Head-node										
Gluster Head Node Volume mirror Bricks Bricks										
Physical Storage 4 LUNs for structuring the Cloud, 4 LUNs for Grid system storage and 2 LUNs for system configurations										
	Network Storage (NAS)									
	1	2		10						

Site status

- So far the system has run a maximum of 200 concurrent jobs
- The average CPU efficiency of all CMS jobs over the previous year is 83% from the Swedish Grid Accounting System (SGAS).

Machine view for nodeslab-0002.nlab.tb.hiit.fi

Start month 2013-08 V End month 2014-08 V Submit

Top 10 projects for the selected date range

	Walltime days	Efficiency	Number of jobs
cms	9163	83	147290

Performance analysis

- Application Level
 - 4% performance loss evaluated with the HEPSPEC-2006 (Thanks to Ulf Tigerstedt, CSC for help with HEPSPEC tests)
- System Level

VM boot response both at local vs GlusterFS

based setup

GlusterFS IO response

- Brick 1 and 2 is used inside the Cloud
- Brick 3 and 4 is used for the Glance and Nova

		Brick-1	Brick-2	Brick-3	Brick-4			
Days		20	20	20	20			
Total Reads		40GB	41GB	169GB	831GB			
Total Writes		38GB	36GB	364GB	1017GB			
Average – Maximum Latency (milliseconds) / No. of Calls (in millions)								
Read	0.05	-11.6/ 29.8	0.05-10.8/ 31.0	0.29-217.1/ 0.6	0.38-2386/ 0.32			
Write	0.0	08-16.8/ 1.8	0.07-14.0/ 1.9	1.66-5151/ 10.8	1.06-7281/ 7.8			

Article in CHEP-2013:

S. Toor, L. Osmani, P. Eerola, O. Kraemer, T. Lindén, S. Tarkoma, J. White. A scalable infrastructure for CMS data analysis based on OpenStack Cloud and Gluster file system. Journal of Physics:

Conference Series 513 062047

doi:10.1088/1742-6596/513/6/062047.

Elastic solution

- We have extended the EES plugin of the EMI Argus service
- Execution Environment Service (EES) originally designed for the OpenNebula but now it can work with OpenStack Cloud as well
- John White is mainly responsible for this work
- Argus client-side modifications completed
- The component is not production ready yet

OpenStack, Argus and EES extension

Article in ISGC-2014:

J. White, S. Toor, L. Osmani, P. Eerola, O. Kraemer, T. Lindén, and S. Tarkoma. **Dynamic Provisioning of Resource in a Hybrid Infrastructure**. In press, International Symposium on Grids and Clouds (ISGC) 2014, Taipei, Taiwan.

Secure cloud setup

- We have used Host Identity Protocol (HIP) for structuring the secure cloud
- Host Identity Protocol (HIP)
 - Designed for mobile networks
 - Provides a secure mechanism for IP multihoming and mobility (VM migration)
 - HIP separates the end-point identifier and locator roles of IP addresses
 - Provides persistent cryptographic identifiers
 - Supports both IPv4 and IPv6 addressing
 - The Host Identifiers (HI) are not routable, so they are translated into routable addresses (locators) between network and transport layer
 - The HIP connections are typically protected with IPSec

HIP -> http://infrahip.hiit.fi

Secure private cloud

Secure hybrid cloud

- CSC, The Finnish IT Center for Science has a new data center in Kajaani, more than 500 km from Helsinki
- CSC has a HP 9216 cores (Q4 17000 cores) supercluster Taito, with 16 cores and 64 GB RAM on most nodes
- The Pouta cloud is an Infrastructure as a Service running on a part of Taito

Secure hybrid cloud

HIP based experiments

- Submitted 10,000 CMS jobs using CRAB tool
- Execution time is round 170 minutes
- Jobs are CPU bound but required data to be accessed via from external storage via xrootd Protocol
- Job success rate is 99%

Computing Element (CE) CPU usage, without security and with HIP protocol

Computing Element (CE) Network usage, without security and with HIP protocol

Summed CPU usage for Worker nodes, without security and with HIP protocol

Summed Network usage for Worker nodes, without security and with HIP protocol

Article submitted in IEEE:

L. Osmani, S. Toor, M. Komu, M. J. Kortelainen, T. Lindén, J. White, R. Khan, P. Eerola, S. Tarkoma. **Secure Cloud Connectivity for Scientific Applications**. Submitted in IEEE Transactions on Cloud Computing, Special Issue on Scientific Cloud Computing.

Summary

- A scalable infrastructure for CMS jobs has been created which is cloud based and grid enabled
- The cloud setup itself does not rely on grid tools
- The same setup could be used for other applications as well
- The cloud provides flexibility in managing the infrastructure
- Initial results show that the HIP protocol can be very helpful in
 - secure multi-tenant environment
 - secure federated clouds
 - resource mobility

Future directions

- Work on making the EES plugin for OpenStack production quality is continuing
- The Jade cluster is planned to be replaced by a cloud setup on Pouta
- This cloud setup could be used by other scientific applications, like in the Finnish Grid and cloud Infrastructure consortium
- Planning to use Docker containers
- Also working on designing models for power measurements

Possibility of future collaboration

We will be happy to define new collaborations if there will be some common interests.

Prof. Sasu Tarkoma,

sasu.tarkoma@cs.helsinki.fi
http://www.cs.helsinki.fi/u/starkoma/

Dr. Salman Toor

salman.toor@helsinki.fi

http://www.it.uu.se/katalog/salto690

Dr. John White

john.white@cern.ch

http://hiptek.web.cern.ch/hiptek/Personnel/persons/person 0008.html

DII-HEP Cloud

Thanks!