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Outline

● LSF current size and operational setup
● Load, inefficiences and bottlenecks
● Special usecases 
● External Load Indexes



  

LSF current setup

● V7.06, SLC 6.4, 1 Master, 2 shadow
● 3 Grid sites:INFN-T1, INFN-CNAF-LHCB, INFN-T3-BO
● 10 CREAM CEs (emi-3)
● 46 queues (6 LHC, 6 test - operations)
● ~ 1400 WNs, 18Kslots, 180K HS06, ~ 100K Jobs/day
● [Almost] no dedicated resources 
● Fairshare, single-core jobs 

– With exceptions.



  

Activity 2014



  

Special use cases

● 1 SL5 rack, to be phased-out soon (WNoDeS for those still 
needing SL5 or custom setup: cdf, babar)

● 1 WnoDes rack
– Virtual wn management redesigned for scalability, using LSF “External 

Load Indexes” 

– Mixed mode

– auger_db early adopter of the latest release

● Small HPC cluster
– 8 host 16core 48GBRam, Nvidia GPU, 8 x K40 , 2 x K20

– Early setup, being added to LSF soon

● mcore queue



  

Load Issues

● Current bottleneck, at times, has been 
bandwidth 
– Master answering too many requests from clients

– Occasional net saturation experienced



  

Load Issues (2)

● Big bandwidth consumers are CEs (inspected with iftop)
– Default: 1 “bjobs -l” every 120 sec 

– Reduced update rate; using btools 
● bjobsinfo → 80 x smaller output

– 10 CEs (4 of them not managed directly) multiply the problem
● Some sort of proxying may be helpful here

Minor bandwidth consumers:
● A tipical Dirac pilot executes

– 3 to 6  bqueues -l <queue> (one per payload)

– 30 to 60 bjobs -W

– 4000 jobs → 2 requests/sec;

– If master is experiencing overload → answer delay → higher job WallTime



  

Customization (accounting)

● Removed accounting sensors from the CEs (Sep 2013)
– Grid records (cream-blah) are matched with LSF logs on a PostgreSQL 

db on a standalone host, then  propagated to our site-HLR (DGAS).

– Healthy effect for the CPU load on our CEs 



  

Other Customizations

● Monitor web reporting tool recently rewritten (based on 
graphite). Collected data available for (internal) accounting

● Dynamic WN update
– Tool to automate kernel upgrade on WN. Closes the wn, reboots 

after node drained, open the wn again 

● WN failure tracking
– Offline nodes detected by LSF are notified as down (with 

explanation), to our HW inventory db (DOCET). 
● Summary email delivered to farm staff. The node is notified as ok when it 

comes back to production.
● This provides down/up statistics per single node and HW model.



  

Special usecases

● The 1 job: 1 slot (0.x cores if using HT) has been our 
main use-case until now
– Pro: little or no dedicated WN, no unused cores.

● Multicore: unused core is an unavoidable side-effect.
● Job packing: trying to dispatch jobs with a given property 

into the same WN.
– It was investigated months ago (http://goo.gl/n26yxN ); this and 

similar use-cases may be addressed by configuring LSF 
External Load Indexes

– A brief description follows

http://goo.gl/n26yxN
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Relaxed vs Exclusive, 1 VO (lhcb)

Farm, in the long run:
Relaxed: JP, poor aggregation, no empty slots
Exclusive: good aggregation, at the cost of unused slots.



Relaxed vs Exclusive:
ams, argo, lhcb

Three packing families:
Relaxed: JP, poor aggregation, no empty slots
Exclusive: good aggregation, few unused slots.



Fill Factor (lhcb)

avg(ff_relx – ff_excl) = 0.0094  ( ~ 1%)
0.0094 x 800 * 8 = 60
Exclusive packing. “costs” 60 slot



Fill Factor: ams, argo, lhcb

avg(ff_relx – ff_excl) = 0.110341 (~ 11%)
0.110341 x 800 * 8 = 706
Exclusive packing cost: 700 slot



Defining External Load Index

● lsf.shared:

Begin Resource

RESOURCENAME  TYPE INTERVAL INCREASING DESCRIPTION 

# two resources to exploit Job Packing

  pkoth      Numeric 15      Y           (no Pack)

  pkone      Numeric 15      N           (Pack)
● lsf.cluster.<clustername>:

 Begin ResourceMap

 RESOURCENAME  LOCATION

 pkone      [default]

 pkoth      [default]
● Apply changes: lsadmin reconfig ; badmin mbdrestart



External Load Index

● Checking the index

[root@lsf ~]# lsload  -I pkone
HOST_NAME       status    pkone
wn-104-03-01-08     ok      0.0
wn-104-03-01-12     ok      0.0
wn-104-03-01-06     ok      1.0
wn-104-03-01-10     ok      0.0



Write an Elim

• script executed at WN side
[root@wn-xyz ~]# . elim.jp
2 pkone 1 pkoth 0

● while True:
sleep 10
num1 , num2 = compute(“pkone”,”pkoth”)
print “2 pkone %d pkoth %d”%(num1,num2)

•Output must have the form:
• n name_1 value_1 … name_n value_n

•Script name is mandatory: elim.<name>
•Must be located under $LSF_SERVERDIR



Write an Elim

● Info retrieved from /bin/ps

● First we collect job pids:
ps -o pid --ppid `pidof sbatchd`

● Then we get job groups: 
ps -o group -p pid1,...,pidn 

● Finally we map and count group names to pkone, 
pkoth.



Using the index

● Before writing the esub we can check how to use the external 
index

#find nodes with packing jobs
lsload -I pkone -R "select[pkone>0 || 
pkone==0]"

#find nodes without packong jobs
lsload -I pkone -R "select[pkone==0]"

● Submit packing (pk1) and non packing (pk2) jobs
bsub -q pk1 -R "select[pkone > 0 || pkone == 
0]”\         sleep 3600
bsub -q pk2 -R "(pkone == 0) sleep 3600



  

LSF & External Index

● WnoDeS internals have been rewritten to use “external 
Indexes”:
– At submission time an esub script runs on the submitting node. 

This defines a vmid value (uuid: 0xabcd123) and a resource 
request for that value

● -R "select[vmid==0 || vmid==0xabc123], order(-
vmid)" 

–  LSF dispatches the job to a wnodes hypervisor (it has vmid==0). 
pre_exec triggers the creation of a vwn publishing the requested 
vmid value. When ready, the pre_exec fails

– LSF dispatches the job (only) to the vwn with vmid==0xabcd123



  

Wnodes cluster



  

Multicore

● Ce0x-lcg.cr.cnaf.infn.it:8443/cream-lsf-mcore

● 1 LSF queue dedicated, 10 WNs, 8 cores

● Atlas and cms enabled

● Resources provided “as is” up to now



  

Multicore

● We plan to start testing the following 
configuration:
– Mcore hostgroup available to multi-core and single-

core jobs 

– Elim on the Mcore hosts publishing an External 
resource “mc == <number_of_mcore_jobs>”

– Esub adds resource request for jobs:
● MC==0 for single-core jobs
● MC>0 || MC==0 for multi-core jobs



  

Multicore

● The desired effect is to have a dynamic set of nodes 
dedicated to m-core, enlarging or shrinking as needed

● If 0 nodes are running m-core jobs, first ones should 
be selected by LSF with advanced reservation

● Nodes running or finishing m-core jobs, remain 
dedicated to m-core until timeout.

● The reason would be to reduce to a minimum the 
number of “WN drain”, which happens when reserving 
a node.



  

Multicore

● We expect this to be effective if
– There is little variety on the number of requested 

cores (e.g. dealing with 8-core jobs only)

– Nodes with 8, 16, …, k * 8  cores

– A steady flow of multicore jobs is provided.



  

Conclusions

● Our overall experience with LSF is definitely 
positive
– Stable, robust, resilient, reliable

– Many usecases are quite straightforward to 
configure

– Need to gather experience with multicore

●  Scalability not much a problem yet
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