

LSF@INFN-T1

Pre-GDB on batch systems

Bologna – 11-3-2014

Stefano Dal Pra: Stefano.dalpra@cnaf.infn.it

Andrea Chierici: Andrea.chierici@cnaf.infn.it

mailto:Stefano.dalpra@cnaf.infn.it
mailto:Andrea.chierici@cnaf.infn.it

Outline

● LSF current size and operational setup
● Load, inefficiences and bottlenecks
● Special usecases
● External Load Indexes

LSF current setup

● V7.06, SLC 6.4, 1 Master, 2 shadow
● 3 Grid sites:INFN-T1, INFN-CNAF-LHCB, INFN-T3-BO
● 10 CREAM CEs (emi-3)
● 46 queues (6 LHC, 6 test - operations)
● ~ 1400 WNs, 18Kslots, 180K HS06, ~ 100K Jobs/day
● [Almost] no dedicated resources
● Fairshare, single-core jobs

– With exceptions.

Activity 2014

Special use cases

● 1 SL5 rack, to be phased-out soon (WNoDeS for those still
needing SL5 or custom setup: cdf, babar)

● 1 WnoDes rack
– Virtual wn management redesigned for scalability, using LSF “External

Load Indexes”

– Mixed mode

– auger_db early adopter of the latest release

● Small HPC cluster
– 8 host 16core 48GBRam, Nvidia GPU, 8 x K40 , 2 x K20

– Early setup, being added to LSF soon

● mcore queue

Load Issues

● Current bottleneck, at times, has been
bandwidth
– Master answering too many requests from clients

– Occasional net saturation experienced

Load Issues (2)

● Big bandwidth consumers are CEs (inspected with iftop)
– Default: 1 “bjobs -l” every 120 sec

– Reduced update rate; using btools
● bjobsinfo → 80 x smaller output

– 10 CEs (4 of them not managed directly) multiply the problem
● Some sort of proxying may be helpful here

Minor bandwidth consumers:
● A tipical Dirac pilot executes

– 3 to 6 bqueues -l <queue> (one per payload)

– 30 to 60 bjobs -W

– 4000 jobs → 2 requests/sec;

– If master is experiencing overload → answer delay → higher job WallTime

Customization (accounting)

● Removed accounting sensors from the CEs (Sep 2013)
– Grid records (cream-blah) are matched with LSF logs on a PostgreSQL

db on a standalone host, then propagated to our site-HLR (DGAS).

– Healthy effect for the CPU load on our CEs

Other Customizations

● Monitor web reporting tool recently rewritten (based on
graphite). Collected data available for (internal) accounting

● Dynamic WN update
– Tool to automate kernel upgrade on WN. Closes the wn, reboots

after node drained, open the wn again

● WN failure tracking
– Offline nodes detected by LSF are notified as down (with

explanation), to our HW inventory db (DOCET).
● Summary email delivered to farm staff. The node is notified as ok when it

comes back to production.
● This provides down/up statistics per single node and HW model.

Special usecases

● The 1 job: 1 slot (0.x cores if using HT) has been our
main use-case until now
– Pro: little or no dedicated WN, no unused cores.

● Multicore: unused core is an unavoidable side-effect.
● Job packing: trying to dispatch jobs with a given property

into the same WN.
– It was investigated months ago (http://goo.gl/n26yxN); this and

similar use-cases may be addressed by configuring LSF
External Load Indexes

– A brief description follows

http://goo.gl/n26yxN

F n1 n2 ... nk

s1

s2

...

sk

L n1 n2 ... nk

0

v1

vk

V1

Vk

scheduler

Arrival simulator

Enqueue by
qname

a

F == “Farm”
0 = empty | EndTime

Num. Jobs per node/vo

L == Load

Farm simulator

Relaxed vs Exclusive, 1 VO (lhcb)

Farm, in the long run:
Relaxed: JP, poor aggregation, no empty slots
Exclusive: good aggregation, at the cost of unused slots.

Relaxed vs Exclusive:
ams, argo, lhcb

Three packing families:
Relaxed: JP, poor aggregation, no empty slots
Exclusive: good aggregation, few unused slots.

Fill Factor (lhcb)

avg(ff_relx – ff_excl) = 0.0094 (~ 1%)
0.0094 x 800 * 8 = 60
Exclusive packing. “costs” 60 slot

Fill Factor: ams, argo, lhcb

avg(ff_relx – ff_excl) = 0.110341 (~ 11%)
0.110341 x 800 * 8 = 706
Exclusive packing cost: 700 slot

Defining External Load Index

● lsf.shared:

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION

two resources to exploit Job Packing

 pkoth Numeric 15 Y (no Pack)

 pkone Numeric 15 N (Pack)
● lsf.cluster.<clustername>:

 Begin ResourceMap

 RESOURCENAME LOCATION

 pkone [default]

 pkoth [default]
● Apply changes: lsadmin reconfig ; badmin mbdrestart

External Load Index

● Checking the index

[root@lsf ~]# lsload -I pkone
HOST_NAME status pkone
wn-104-03-01-08 ok 0.0
wn-104-03-01-12 ok 0.0
wn-104-03-01-06 ok 1.0
wn-104-03-01-10 ok 0.0

Write an Elim

• script executed at WN side
[root@wn-xyz ~]# . elim.jp
2 pkone 1 pkoth 0

● while True:
sleep 10
num1 , num2 = compute(“pkone”,”pkoth”)
print “2 pkone %d pkoth %d”%(num1,num2)

•Output must have the form:
• n name_1 value_1 … name_n value_n

•Script name is mandatory: elim.<name>
•Must be located under $LSF_SERVERDIR

Write an Elim

● Info retrieved from /bin/ps

● First we collect job pids:
ps -o pid --ppid `pidof sbatchd`

● Then we get job groups:
ps -o group -p pid1,...,pidn

● Finally we map and count group names to pkone,
pkoth.

Using the index

● Before writing the esub we can check how to use the external
index

#find nodes with packing jobs
lsload -I pkone -R "select[pkone>0 ||
pkone==0]"

#find nodes without packong jobs
lsload -I pkone -R "select[pkone==0]"

● Submit packing (pk1) and non packing (pk2) jobs
bsub -q pk1 -R "select[pkone > 0 || pkone ==
0]”\ sleep 3600
bsub -q pk2 -R "(pkone == 0) sleep 3600

LSF & External Index

● WnoDeS internals have been rewritten to use “external
Indexes”:
– At submission time an esub script runs on the submitting node.

This defines a vmid value (uuid: 0xabcd123) and a resource
request for that value

● -R "select[vmid==0 || vmid==0xabc123], order(-
vmid)"

– LSF dispatches the job to a wnodes hypervisor (it has vmid==0).
pre_exec triggers the creation of a vwn publishing the requested
vmid value. When ready, the pre_exec fails

– LSF dispatches the job (only) to the vwn with vmid==0xabcd123

Wnodes cluster

Multicore

● Ce0x-lcg.cr.cnaf.infn.it:8443/cream-lsf-mcore

● 1 LSF queue dedicated, 10 WNs, 8 cores

● Atlas and cms enabled

● Resources provided “as is” up to now

Multicore

● We plan to start testing the following
configuration:
– Mcore hostgroup available to multi-core and single-

core jobs

– Elim on the Mcore hosts publishing an External
resource “mc == <number_of_mcore_jobs>”

– Esub adds resource request for jobs:
● MC==0 for single-core jobs
● MC>0 || MC==0 for multi-core jobs

Multicore

● The desired effect is to have a dynamic set of nodes
dedicated to m-core, enlarging or shrinking as needed

● If 0 nodes are running m-core jobs, first ones should
be selected by LSF with advanced reservation

● Nodes running or finishing m-core jobs, remain
dedicated to m-core until timeout.

● The reason would be to reduce to a minimum the
number of “WN drain”, which happens when reserving
a node.

Multicore

● We expect this to be effective if
– There is little variety on the number of requested

cores (e.g. dealing with 8-core jobs only)

– Nodes with 8, 16, …, k * 8 cores

– A steady flow of multicore jobs is provided.

Conclusions

● Our overall experience with LSF is definitely
positive
– Stable, robust, resilient, reliable

– Many usecases are quite straightforward to
configure

– Need to gather experience with multicore

● Scalability not much a problem yet

Acknowledgments

Thanks to the Multicore TF for their activity and
support to requests.

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28

