LSF@INFN-T1

Pre-GDB on batch systems Bologna – 11-3-2014

Stefano Dal Pra: Stefano.dalpra@cnaf.infn.it

Andrea Chierici: Andrea.chierici@cnaf.infn.it

Outline

- LSF current size and operational setup
- Load, inefficiences and bottlenecks
- Special usecases
- External Load Indexes

LSF current setup

- V7.06, SLC 6.4, 1 Master, 2 shadow
- 3 Grid sites:INFN-T1, INFN-CNAF-LHCB, INFN-T3-BO
- 10 CREAM CEs (emi-3)
- 46 queues (6 LHC, 6 test operations)
- ~ 1400 WNs, 18Kslots, 180K HS06, ~ 100K Jobs/day
- [Almost] no dedicated resources
- Fairshare, single-core jobs
 - With exceptions.

Activity 2014

Special use cases

- 1 SL5 rack, to be phased-out soon (WNoDeS for those still needing SL5 or custom setup: cdf, babar)
- 1 WnoDes rack
 - Virtual wn management redesigned for scalability, using LSF "External Load Indexes"
 - Mixed mode
 - auger_db early adopter of the latest release
- Small HPC cluster
 - 8 host 16core 48GBRam, Nvidia GPU, 8 x K40, 2 x K20
 - Early setup, being added to LSF soon
- mcore queue

Load Issues

- Current bottleneck, at times, has been bandwidth
 - Master answering too many requests from clients
 - Occasional net saturation experienced

Network utilization

Load Issues (2)

- Big bandwidth consumers are CEs (inspected with iftop)
 - Default: 1 "bjobs -l" every 120 sec
 - Reduced update rate; using btools
 - bjobsinfo → 80 x smaller output
 - 10 CEs (4 of them not managed directly) multiply the problem
 - Some sort of proxying may be helpful here

Minor bandwidth consumers:

- A tipical Dirac pilot executes
 - 3 to 6 bqueues -l <queue> (one per payload)
 - 30 to 60 bjobs -W
 - 4000 jobs → 2 requests/sec;
 - If master is experiencing overload → answer delay → higher job WallTime

Customization (accounting)

- Removed accounting sensors from the CEs (Sep 2013)
 - Grid records (cream-blah) are matched with LSF logs on a PostgreSQL db on a standalone host, then propagated to our site-HLR (DGAS).
 - Healthy effect for the CPU load on our CEs

Other Customizations

- Monitor web reporting tool recently rewritten (based on graphite). Collected data available for (internal) accounting
- Dynamic WN update
 - Tool to automate kernel upgrade on WN. Closes the wn, reboots after node drained, open the wn again
- WN failure tracking
 - Offline nodes detected by LSF are notified as down (with explanation), to our HW inventory db (DOCET).
 - Summary email delivered to farm staff. The node is notified as ok when it comes back to production.
 - This provides down/up statistics per single node and HW model.

Special usecases

- The 1 job: 1 slot (0.x cores if using HT) has been our main use-case until now
 - Pro: little or no dedicated WN, no unused cores.
- Multicore: unused core is an unavoidable side-effect.
- Job packing: trying to dispatch jobs with a given property into the same WN.
 - It was investigated months ago (http://goo.gl/n26yxN); this and similar use-cases may be addressed by configuring LSF External Load Indexes
 - A brief description follows

Farm simulator

Relaxed vs Exclusive, 1 VO (lhcb)

Farm, in the long run:

Relaxed: JP, poor aggregation, no empty slots

Exclusive: good aggregation, at the cost of unused slots.

Relaxed vs Exclusive: ams, argo, lhcb

Three packing families:

Relaxed: JP, poor aggregation, no empty slots

Exclusive: good aggregation, few unused slots.

Fill Factor (lhcb)

avg(ff_relx - ff_excl) = 0.0094 (~ 1%) 0.0094 x 800 * 8 = 60 Exclusive packing. "costs" 60 slot

Fill Factor: ams, argo, lhcb

avg(ff_relx - ff_excl) = 0.110341 (~ 11%) 0.110341 x 800 * 8 = 706 Exclusive packing cost: 700 slot

Defining External Load Index

• Isf.shared:

```
Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
# two resources to exploit Job Packing
pkoth Numeric 15 Y (no Pack)
pkone Numeric 15 N (Pack)
```

lsf.cluster.<clustername>:

```
Begin ResourceMap
RESOURCENAME LOCATION
pkone [default]
pkoth [default]
```

Apply changes: lsadmin reconfig; badmin mbdrestart

External Load Index

Checking the index

Write an Elim

- script executed at WN side
 [root@wn-xyz ~]# . elim.jp
 pkone 1 pkoth 0
- while True:
 sleep 10
 num1 , num2 = compute("pkone","pkoth")
 print "2 pkone %d pkoth %d"%(num1,num2)
- Output must have the form:
 - n name 1 value 1 ... name n value n
- •Script name is mandatory: elim.<name>
- Must be located under \$LSF_SERVERDIR

Write an Elim

- Info retrieved from /bin/ps
- First we collect job pids:
 ps -o pid --ppid `pidof sbatchd`
- Then we get job groups:

 ps -o group -p pid1,...,pidn
- Finally we map and count group names to pkone, pkoth.

Using the index

Before writing the esub we can check how to use the external index

```
#find nodes with packing jobs
lsload -I pkone -R "select[pkone>0 ||
pkone==0]"
```

```
#find nodes without packong jobs
lsload -I pkone -R "select[pkone==0]"
```

Submit packing (pk1) and non packing (pk2) jobs
bsub -q pk1 -R "select[pkone > 0 || pkone ==
0]"\ sleep 3600
bsub -q pk2 -R "(pkone == 0) sleep 3600

LSF & External Index

- WnoDeS internals have been rewritten to use "external Indexes":
 - At submission time an esub script runs on the submitting node.
 This defines a vmid value (uuid: 0xabcd123) and a resource request for that value
 - -R "select[vmid==0 || vmid==0xabc123], order(-vmid)"
 - LSF dispatches the job to a wnodes hypervisor (it has vmid==0).
 pre_exec triggers the creation of a vwn publishing the requested vmid value. When ready, the pre_exec fails
 - LSF dispatches the job (only) to the vwn with vmid==0xabcd123

Wnodes cluster

Ce0x-lcg.cr.cnaf.infn.it:8443/cream-lsf-mcore

1 LSF queue dedicated, 10 WNs, 8 cores

Atlas and cms enabled

Resources provided "as is" up to now

- We plan to start testing the following configuration:
 - Mcore hostgroup available to multi-core and singlecore jobs
 - Elim on the Mcore hosts publishing an External resource "mc == <number_of_mcore_jobs>"
 - Esub adds resource request for jobs:
 - MC==0 for single-core jobs
 - MC>0 || MC==0 for multi-core jobs

- The desired effect is to have a dynamic set of nodes dedicated to m-core, enlarging or shrinking as needed
- If 0 nodes are running m-core jobs, first ones should be selected by LSF with advanced reservation
- Nodes running or finishing m-core jobs, remain dedicated to m-core until timeout.
- The reason would be to reduce to a minimum the number of "WN drain", which happens when reserving a node.

- We expect this to be effective if
 - There is little variety on the number of requested cores (e.g. dealing with 8-core jobs only)
 - Nodes with 8, 16, ..., k * 8 cores
 - A steady flow of multicore jobs is provided.

Conclusions

- Our overall experience with LSF is definitely positive
 - Stable, robust, resilient, reliable
 - Many usecases are quite straightforward to configure
 - Need to gather experience with multicore
- Scalability not much a problem yet

Acknowledgments

Thanks to the Multicore TF for their activity and support to requests.