
HTCondor at the RAL Tier-1

Andrew Lahiff, Alastair Dewhurst,

John Kelly, Ian Collier

pre-GDB on Batch Systems

11 March 2014, Bologna

2

Outline

1. RAL batch system

– Background

– Why we migrated to HTCondor

– Experience so far

2. In detail

– Compatibility with middleware

– Installation & configuration

– Queues

– Fairshares

– Scalability

– Support

– Multi-core jobs

– Dynamic WNs

RAL batch system

3

• Batch system at the RAL Tier-1

– 656 worker nodes, 9312 slots, 93000 HEPSPEC06

– Growing soon to beyond 12000 slots

• VOs supported

– All LHC experiments. RAL provides:

• 2% of ALICE T1 requirements

• 13% of ATLAS T1 requirements

• 8% of CMS T1 requirements

• 19% of LHCb T1 requirements (will grow to 30%)

– Many non-LHC experiments, including non-HEP

– No local job submission – only via grid

4

RAL batch system

• Torque + Maui had been used for many years at RAL

• Many issues

– Severity and number of problems increased as size of farm increased

• Problems included
– pbs_server, maui sometimes unresponsive

– pbs_server needed to be restarted sometimes due to excessive memory usage

– Job start rate sometimes not high enough to keep the farm full

• Regularly had times when had many idle jobs but farm not full

– Regular job submission failures on CEs - Connection timed out-qsub: cannot connect to

server

– Unable to schedule jobs to the whole-node queue

• We wrote our own simple scheduler for this, running in parallel to Maui

– Didn’t handle mixed farm with SL5 and SL6 nodes well

– DNS issues, network issues & problematic worker nodes cause it to become very

unhappy

• Increasing effort just to keep it working

5

Torque + Maui

• In August 2012 started looking for an alternative – criteria:

6

Choosing a new batch system

– Integration with WLCG community

• Compatabile with grid middleware

• APEL accounting

– Integration with our environment

• E.g. Does it require a shared filesystem?

– Scalability

• Number of worker nodes

• Number of cores

• Number of jobs per day

• Number of running, pending jobs

– Robustness

• Effect of problematic WNs on batch

server

• Effect if batch server is down

• Effect of other problems (e.g. network

issues)

– Support

– Procurement cost

• Licenses, support

• Avoid commercial products if at all possible

– Maintenance cost

• FTE required to keep it running

– Essential functionality

• Hierarchical fairshares

• Ability to limit resources

• Ability to schedule multi-core jobs

• Ability to place limits on numbers of running

jobs for different users, groups, VOs

– Desirable functionality

• High availability

• Ability to handle dynamic resources

• Power management

• IPv6 compatibility

• Considered, tested & eventually rejected the following technologies:

– LSF, Univa Grid Engine

• Avoid commercial products unless absolutely necessary

– Open-source Grid Engines

• Competing products, not sure which has best long-term future

• Communities appear less active than SLURM & HTCondor

• Existing Tier-1s using Univa Grid Engine

– Torque 4 + Maui

• Maui problematic

• Torque 4 seems less scalable than alternatives

– SLURM

• Carried out extensive testing and comparison with HTCondor

• Found that for our use case:

– Very fragile, easy to break

– Unable to get to work reliably above 6000 jobs slots

• For more information, see

http://indico.cern.ch/event/247864/session/5/contribution/21

7

Choosing a new batch system

• HTCondor chosen as replacement for Torque + Maui

– Has the features we require

– Seems very stable

– Easily able to run 16,000 simultaneous jobs

• Prior to deployment into production we didn’t try larger numbers of jobs

– Didn’t expect to exceed this number of slots within the next few years

• Didn’t do any tuning – it “just worked”

8

Choosing a new batch system

9

Migration to HTCondor

• Timeline

2012 Aug - Started evaluating alternatives to Torque/Maui

2013 June - Began testing HTCondor with ATLAS & CMS

2013 Aug - Choice of HTCondor approved by RAL Tier-1 management

2013 Sept - Declared HTCondor as a production service

 - Moved 50% of pledged CPU resources to HTCondor

 (upgraded WNs to SL6 as well as migrating to HTCondor)

2013 Nov - Migrated remaining resources to HTCondor

10

Experience so far

• Current setup

– 8.0.6 on central managers (high-availability pair), CEs

– 8.0.4 on worker nodes

– Using 3 ARC CEs, 2 CREAM CEs

• Experience

– Very stable operation, no crashes or memory leaks

– Job start rate much higher than Torque/Maui, even when throttled

– Staff able to spend time investigating improvements/new features,

not just fire-fighting

In detail

11

• EMI-3 CREAM CE

– HTCondor not officially supported

• BLAH supports HTCondor

– Job submission works!

• HTCondor support in YAIM doesn’t exist in EMI-3

– We modified the appropriate YAIM function so that the blah configuration file is

generated correctly

• Script for publishing dynamic information doesn’t exist in EMI-3

– Wrote our own based on the scripts in old CREAM Ces

– Updated to support partitionable slots

• APEL parser for HTCondor doesn’t exist in EMI-3

– Wrote a script which writes PBS style accounting records from condor history files, which

are then read by PBS APEL parser

– Relatively straightforward to get an EMI-3 CREAM CE working

• We will make our scripts available to the community

• Milan Tier-2 also helpful

12

Compatibility with

Middleware

• ARC CE

– Successfully being used by some ATLAS & CMS Tier-2s outside of Nordugrid
(with SLURM, Grid Engine, …)

• LRZ-LMU, Estonia Tier 2, Imperial College, Glasgow

– Benefits of ARC CEs

• Support HTCondor better than CREAM CEs do

• Simpler than CREAM CEs

– No YAIM

– No Tomcat

– No MySQL

• ARC CE accounting publisher (JURA) can send accounting records directly to APEL

using SSM

– APEL publisher node not required

– The LHC VOs and ARC CEs

• ATLAS and CMS fine

– At RAL ATLAS & CMS only have access to ARC CEs

• LHCb added ability to DIRAC to submit to ARC CEs

– Not yet at the point of LHCb only using ARC CEs

• ALICE can’t use them yet, but will work on this

13

Compatibility with

Middleware

• Most basic install + configuration is trivial

– Time between basic SL6 machine & running jobs = time taken for yum to run
[root@lcg0732 ~]# yum install condor

…

[root@lcg0732 ~]# service condor start

Starting up Condor... done.

[root@lcg0732 ~]# condor_status -any

MyType TargetType Name

Collector None Personal Condor at lcg0732.gridpp.rl.ac.u

Scheduler None lcg0732.gridpp.rl.ac.uk

DaemonMaster None lcg0732.gridpp.rl.ac.uk

Negotiator None lcg0732.gridpp.rl.ac.uk

Machine Job slot1@lcg0732.gridpp.rl.ac.uk

Machine Job slot2@lcg0732.gridpp.rl.ac.uk

Machine Job slot3@lcg0732.gridpp.rl.ac.uk

Machine Job slot4@lcg0732.gridpp.rl.ac.uk

Machine Job slot5@lcg0732.gridpp.rl.ac.uk

Machine Job slot6@lcg0732.gridpp.rl.ac.uk

Machine Job slot7@lcg0732.gridpp.rl.ac.uk

Machine Job slot8@lcg0732.gridpp.rl.ac.uk

[root@lcg0732 ~]# su - alahiff

-bash-4.1$ condor_submit condor.sub

Submitting job(s).

1 job(s) submitted to cluster 1.

-bash-4.1$ condor_q

-- Submitter: lcg0732.gridpp.rl.ac.uk : <130.246.216.4:34655> : lcg0732.gridpp.rl.ac.uk

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

 1.0 alahiff 3/4 10:25 0+00:00:02 R 0 0.0 sleep 60

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended 14

Initial install

15

Configuration

• Use default config + /etc/condor/config.d/

– Files read in alphanumerical order

– Have each “feature” in a different file

• Security

• Fairshares

• Assignment of accounting groups

• Resource limits

• …

• Configuration managed by Quattor

– Use ncm-filecopy to write config files

– Runs condor_reconfig as necessary so that changes are picked up

– Don’t miss YAIM at all – better without

• A number of sites have written Puppet modules

– Generally available in github

• HTCondor has no concept of queues in the Torque sense

– We see no reason to have such queues

• Jobs can request what resources they require, e.g.
request_cpus = 8

request_memory = 16000

request_disk = 20000

• Jobs can also specify other requirements, e.g.
Requirements = OpSysAndVer == “SL5”

or

Requirements = Machine == "lcg1647.gridpp.rl.ac.uk"

• Therefore

– CE needs to pass on job requirements to HTCondor

16

Queues

• Using similar hierarchical fairshares to what we used in

Torque/Maui

• Accounting group setup (only ATLAS sub-groups shown)

• Configuration

– Negotiator configured to consider DTEAM/OPS and HIGHPRIO groups

before all others

– VO CE SUM test jobs forced to be in HIGHPRIO group

17

Fairshares

<root>

ATLAS

prodatlas atlas_pilot prodatlas_multicore atlas_pilot_multicore

CMS ALICE LHCb NON-LHC HIGHPRIO DTEAM/OPS

• High availability of central manager

– Using 2 central managers

– Shared filesystem not required

– Default configuration from documentation works fine for us

• Startd cron

– Worker node health-check script

– Information about problems advertised in WN ClassAds

– Prevents new jobs from starting in the event of problems

• Checks CVMFS, disk, swap, …

• If problem with ATLAS CVMFS, only stops new ATLAS jobs from starting

• Cgroups

– Testing both cpu & memory cgroups

– Help to ensure jobs use only the resources they request

18

Other features

• Initial testing

– Prior to deployment into production

– 110 8-core worker nodes, high number of slots each

– Easily got to 16,000 running jobs without tuning

• More recent testing

– 64 32-core worker nodes, high number of slots each

– So far have had over 30,000 running jobs successfully

19

Scalability

• Support options

– Free, via mailing list

– Fee-based, via HTCondor developers or third-party companies

• Our experience

– So far very good

– Experienced issue affecting high-availability of central mangers

• Fixed quickly & released in 8.0.2

– Experienced issue caused by network break between CEs and WNs

• Problem quickly understood & fixed in 8.1.4

– Questions answered quickly

• Other support

– US Tier-1s have years of experience with HTCondor & close ties to

developers

• They have also been very helpful

20

Support

• WN configuration

– Partitionable slots: WN resources (CPU, memory, disk, …) divided up

as necessary for jobs

• Partitioning of resources

– We’re using dynamic allocation of multi-core jobs

– Easily could partition resources

• Since ATLAS usage has been ~stable, this wouldn’t waste resources

• condor_defrag daemon

– Finds WNs to drain, drains them, then cancels draining when

necessary

– Works immediately out-of-the-box, but we’re tuning it to:

• Minimize wasted CPUs

• Ensure start-up rate of multi-core jobs is adequate

• Maintain required number of running multi-core jobs

21

Multi-core jobs

• HTCondor was designed to make use of opportunistic resources

– No restarting of any services (like Torque would require)

– No hard-wired list of WNs

– No pre-configuration of potential WNs

• WNs advertise themselves to the collector

• With appropriate security permissions, can join the pool and run jobs

• Dynamic provisioning of virtual WNs

– Common to use simple scripts to monitor pools & instantiate VMs as

necessary

– Alternatively, can use existing power management functionality in HTCondor

– condor_rooster

• Designed to wake-up powered down physical WNs as needed

• Can configure to run command to instantiate a VM

– Easy to configure HTCondor on virtual WNs to drain then shutdown the WN

after a certain time

– Tested successfully at RAL (not yet in production)

• CHEP 2013 http://indico.cern.ch/event/214784/session/9/contribution/205

• HEPiX Fall 2013 http://indico.cern.ch/event/247864/session/4/contribution/53 22

Dynamic WNs

• Due to scalability problems with Torque + Maui, migrated to

HTCondor

• We are happy with the choice we made based on our

requirements

– Confident that the functionality & scalability of HTCondor will meet

our needs for the foreseeable future

• We have both ARC & CREAM CEs working with HTCondor

– Relatively easy to get working

– Aim to phase-out CREAM CEs

23

Summary

Questions? Comments?

24

