
Pre-GDB 2014

Infrastructure Analysis
Christian Nieke – IT-DSS

13.5.2014 Pre-GDB 2014: Christian Nieke 1

What do we want to do?

• Understand our systems

• Which parameters influence the behaviour?

• What are our use cases?

• Which metrics can measure performance?

• Quantify

• Improve

• Describe our expectations and current status

• Detect problems

• Understand what causes them

• Predict

• Future demand

• Effect of system changes

13.5.2014 Pre-GDB 2014: Christian Nieke 2

What do we have already?

• Data Sources

• EOS logs per file access

• some 20 metrics per open/close sequence

• very similar to xroot f-Stream (collected by Matevz)

• LSF - another 20 metrics per job

• cpu, wall, os, virt/phys, RSS, swap, local I/O

• Dashboards

• experiment side classification and (in some cases) event rate

• But combining them is tricky…

• Lack of unique identifier for cross matches

• Combine information via xroot plugin?

13.5.2014 Pre-GDB 2014: Christian Nieke 3

Important parameters

• Analysis and Effects of:
• Remote/Federated access

• e.g.CERN <-> Wigner

• I/O & Network

• CPU: AMD/Intel

• Configuration

• Vector Read/TtreeCache, OS etc.

• Use Cases
• Analysis/Production

• Per experiment

• Internal (EOS-balancing etc.)

• …

13.5.2014 Pre-GDB 2014: Christian Nieke 4

Metrics - How to measure performance?

• CPU-”efficiency”? (𝐶𝑃𝑈 𝑊𝑎𝑙𝑙)

• Increases with better I/O throughput…

• … but also with slower CPU

• Still useful as an indicator for problems
• But it should not be the only target for optimization

• Better name: “CPU ratio”

13.5.2014 Pre-GDB 2014: Christian Nieke 5

IO IO CPU CPU IO CPU CPU

CPU efficiency: 50% CPU efficiency: 67%

IO IO CPU CPU IO CPU CPU

CPU efficiency: 50% CPU efficiency: 60%

IO CPU

IO

Example: Throughput vs. CPU-Ratio

• The idea is that low CPU ratio points to slow I/O

• But the relation is not that straightforward…

13.5.2014 Pre-GDB 2014: Christian Nieke 6

Metrics - How to measure performance?

• Runtime?
• If the same job runs faster, this is obviously better

• But hard to compare:

• Different jobs

• Different data sets (and sizes)

• Event rate?
• Intuitive: Events / second

• More stable than just time(ratios)

• For the same kind of job

• For similar data

• Useful for comparison of parameters

• E.g. CERN/Wigner for similar job mix

• Right now not reported by all experiments

13.5.2014 Pre-GDB 2014: Christian Nieke 7

Metrics - How to measure performance?

• Job Statistics:

• Collect key metrics (time spend in CPU, I/O and network

transfer rate, event rate…) per job

• Allows optimization for users and system

• User: “50% time spent in network? I should check this! ”

• System: “95% time spent in CPU? We should upgrade CPUs rather

than switches.”

• Categorize into Job Profiles

• Allow users to compare their jobs to the average in their

category

13.5.2014 Pre-GDB 2014: Christian Nieke 8

CPU
40%

Network
50%

Disc
10%

Proposal for xroot

• Proposal:

• add xroot client plugin to collect cpu and user metrics per session

• Correlated (by session id) with f-stream

• eg: cpu / wall / memory / swap / local IO

• event rate from ROOT / exp. framework

• Define app info field for main workloads

• Eg: app_info := “app/version/specific_setting”

• EOS internally uses: /eos/gridftp, /eos/balancing, /eos/draining, etc

• This would allow passive analysis of experiment throughput
per ‘app’

• statistical comparison of sites/os/sw_versions

• One would not be able to average evt/s over different apps

• but one would be able to sum-up relative increases/decreases

13.5.2014 Pre-GDB 2014: Christian Nieke 9

How to improve the system?

• Model for expected behaviour

• For now: Avg. values within a given group

• Goal: Models for specific, well defined groups

• E.g. Analysis/Production per Experiment, Internal(EOS-balancing)

• Detection of unexpected behaviour

• For now: detection of outliers

• Goal: automatically detect deviation from models

13.5.2014 Pre-GDB 2014: Christian Nieke 10

Example: Results based on simple detection

• LSF-Group:

• Automatic detection of low CPU-Rate (<50%)

• Users are informed personally

• Experiments above 80%

13.5.2014 Pre-GDB 2014: Christian Nieke 11

Example: Users lacking information

• One example from new LSF low-CPU-usage probes

• one user with often only 2-3% CPU utilisation

• 60-100kB/s average transfer rate

• CPU@CERN - all data at US-T2

• After vector-read/TTC was enabled

• improvement by factor 4.5 in turn-around and CPU utilisation

• remaining factor 6 wrt local EOS access

• Low “visible” impact on users (given sufficient batch

slots)

• even slow jobs are running stable in parallel

• no concrete expectation about what their job duration /

transfer speed should be

13.5.2014 Pre-GDB 2014: Christian Nieke 12

Summary

• Understanding the system:

• Several parameters and use cases identified

• Good metrics are still an open question

• Improving the system:

• Currently semi-automatic detection of anomalies

• Working towards higher automatisation

• But already some success stories

• Prediction:

• Still in the future…

• Proposal:

• xRoot plugin for better integration of monitoring information

13.5.2014 Pre-GDB 2014: Christian Nieke 13

