Federated Storage Workshop

https://indico.fnal.gov/conferenceDisplay.py?confId=7207

Summary
For pre-GDB (Data Access) Meeting 5/13/14
Andrew Hanushevsky
SLAC National Accelerator Laboratory

April 10-11, 2014 SLAC

- ALICE (Alien)
 - Long history of using federated storage
 - Catalog driven read-write exclusively XRootD federation
 - Though other protocols supported for various types of files
 - Heavy production usage
 - Past 6 months: 12PB written (0.85GB/s) & 126PB read back (8.4GB/s)
 - Small reads cause a large WAN I/O performance hit.
 - Local storage avg: 1.44 MB/s & Remote storage avg: 0.54 MB/s
 - Average CPU efficiency: 55%
 - Waiting for XRootD R4 with planned migration

- ATLAS (FAX)
 - Rocky start due to LFC bottleneck in Name2Name translation
 - Now, sites use Rucio name convention so very stable
 - 47 sites deployed
 - Hammer Cloud testing is an ongoing activity
 - Architectural issues as SLAC & SWT will be fixed for improvement
 - PANDA now enabled for FAX failover
 - Saves a significant number of jobs that would otherwise fail
 - Continuous monitoring and improvement whenever possible
 - This is essentially production now

- CMS (AAA)
 - Took a lot of work, especially to improve WAN I/O
 - Required for a workable large-scale federation
 - Today over 80% of T1/T2 sites are federated
 - Those that are not are poorly performing sites, so OK
 - Federated access at the same I/O level as bulk file transfer
 - Used for fallback and small-scale opportunistic scheduling
 - Read-only now looking to see how to do read-write

- COEPP (Australia)
 - Initially read-only federation
 - Problems:
 - WAN transfer rates problematic when TTree cache is turned off
 - Caching is problematic using FRM facility
 - Federated write access

UK

- Impact on infrastructure is an open topic
 - Need to research and understand the access patterns
- Doing stress tests via hammer cloud
 - 100-200 jobs work fine on well connected sites

Monitoring

- Analysis
 - Predict impact of federated access on EOS
 - Understand relationship between I/O and CPU
 - Propose events/sec as efficiency measure
 - Does it matter as users don't seem to care as long as it runs
 - E.G. not turning on vector reads, Ttree-cache, etc
 - Impact of fail over on CERN is minimal (<1%)
 - More of a CPU issue as more people take up slots

Monitoring

- Developing a cost matrix is essential
 - Cost of data transfer from any endpoint pair
 - Essential for scheduler to use this to not over-commit a site
 - May require some kind of throttling anyway
- Monitoring data rapidly increasing
 - 1 TB of monitoring data collected so far
 - The increasing rate and variety is causing scaling issues
 - Provides wealth of information so new uses being developed
 - File popularity, space resource usage, etc

WAN Access

- Effective access requires retooling the application
 - Latency ranges from 30 to 300 ms
- Caching is a must but roots's TTreeCache is not always sufficient
 - During training (first 20) every object is read with a separate network access
 - A typical CMS 1000 branch file -> 20 minutes training time
 - At 130 ms latency WAN file access takes too much time
 - Solution is bulk loading then training, reduces startup time
 - Bulk training yields an order of magnitude improvement
 - Changes will be integrated into the core by the root team

Access Patterns

- Crucial to understand
 - Develop new computing models and caching proxies
 - Can be used as a simulation for a caching proxy
 - Can be used to improve CPU efficiency
- Data access in user areas is least predictable
- Needs to periodically redone because it changes
 - Sensitive to data formats

Scale Testing

- Federated file open rate
 - Generally, will scale to CMS needs
 - File open needs to be 100HZ but tested to 200HZ
 - However, very sensitive to SE type
 - Investigation on the way as to why such high variability
- Read rate
 - US sites do well
 - However large variability even with similar SE's
 - This may be due to local load

Workload Management

Panda

- Finding a spot for federated storage in an exabyte environment
 - Rescuing failed transfers
 - Done and working well
 - Mitigating bottlenecks in job queues near local data
 - Opportunistic scheduling (alpha testing successful)
 - Significantly reduced wait time
 - Actively using federated storage for transfers
 - May need to throttle transfer rate
 - Already doing this by limiting the number of jobs
 - Many other possibilities

Recent Development

- HTTP plug-in for XRootD
 - Additional access mode (HTTP/HTTPS/WebDav)
- Full plugin environment in XRootD client
 - Additional application-specific processing modes
- Caching XRootD Proxy Server
 - Reduce network latency
 - Automatically manage site storage
 - Repairing local storage
- HTTP based federations
 - Another way of accessing federated storage

Next Meeting

- Target is January 2015
 - UK or Rome