
› All kinds of mechanisms

HTCondor scheduling policy

1

Overview of Condor Architecture

2

Central

Manager

Greg Job1

Greg Job2

Greg Job3

Ann Job1

Ann Job2

Ann Job3

Greg Job4

Greg Job5

Greg Job6

Ann Job7

Ann Job8

Joe Job1

Joe Job2

Joe Job3

Schedd A Schedd B

worker worker worker worker worker worker

Usage

History

Central

Manage

r

Flocking

› Set in submit file with

›JobPriority = 7

› … or dynamically with condor_prio cmd

› Users can set priority of their own jobs

› Integers, larger numbers are better priority

› Only impacts order between jobs for a

single user on a single schedd

› A tool for users to sort their own jobs

Schedd Policy: Job Priority

3

› Set with

›RANK = Memory

› In condor_submit file

› Not as powerful as you may think:

Remember steady state condition

Schedd Policy: Job Rank

4

› Another Central manager

› In central manager config

›FOO_LIMIT = 10

› In submit file

›concurrency_limits = foo

Concurrency Limits

5

› schedd sends all idle jobs to the negotiator

› Negotiator picks machines (idle or busy) to

match to these idle jobs

› How does it pick?

Rest of this talk:

Provisioning, or Scheduling

6

› Negotiator computes, stores the user prio

› View with condor_userprio tool

› Inversely related to machines allocated

(lower number is better priority)

A user with priority of 10 will be able to claim

twice as many machines as a user with priority

20

Negotiator metric: User Priority

7

› Bob in schedd1 same as Bob in schedd2?

› If have same UID_DOMAIN, the are.

› Prevents cheating by adding shedds

› We’ll talk later about other user definitions.

› Map files can define the local user name

What’s a user?

8

› (Effective) User Priority is determined by

multiplying two components

› Real Priority * Priority Factor

User Priority (2)

9

› Based on actual usage

› Starts at 0.5

› Approaches actual number of machines used

over time

Configuration setting PRIORITY_HALFLIFE

If PRIORITY_HALFLIFE = +Inf, no history

Default one day (in seconds)

› Asymptotically grows/shrinks to current usage

Real Priority

10

› Assigned by administrator

Set/viewed with condor_userprio

Persistently stored in CM

› Defaults to 100 (DEFAULT_PRIO_FACTOR)

Used to default to 1

› Allows admins to give prio to sets of users, while

still having fair share within a group

› “Nice user”s have Prio Factors of 1,000,000

Priority Factor

11

› Command usage:

condor_userprio –most
 Effective Priority

User Name Priority Factor In Use (wghted-hrs) Last Usage

-- --------- ------ ----------- ----------

lmichael@submit-3.chtc.wisc.edu 5.00 10.00 0 16.37 0+23:46

blin@osghost.chtc.wisc.edu 7.71 10.00 0 5412.38 0+01:05

osgtest@osghost.chtc.wisc.edu 90.57 10.00 47 45505.99 <now>

cxiong36@submit-3.chtc.wisc.edu 500.00 1000.00 0 0.29 0+00:09

ojalvo@hep.wisc.edu 500.00 1000.00 0 398148.56 0+05:37

wjiang4@submit-3.chtc.wisc.edu 500.00 1000.00 0 0.22 0+21:25

cxiong36@submit.chtc.wisc.edu 500.00 1000.00 0 63.38 0+21:42

condor_userprio

12

› Fundamental tension between

Throughput vs. Fairness

› Preemption is required to have fairness

› Need to think hard about runtimes, fairness

and preemption

› Negotiator implementation preemption

› (Workers implement eviction: different)

A note about Preemption

13

› Gets all the slot ads

› Updates user prio info for all users

› Based on user prio, computes submitter

limit for each user

› Foreach user, finds the schedd, gets a job

Finds all matching machines for job

Sorts the jobs

Gives the job the best sorted machine

Negotiation Cycle

14

NEGOTIATOR_PRE_JOB_RANK =

 RemoteOwner =?= UNDEFINED

JOB_RANK = mips

NEGOTIATOR_POST_JOB_RANK =

 (RemoteOwner =?= UNDEFINED) *

(KFlops - SlotID)

Sorting slots: sort levels

15

If Matched machine claimed,

extra checks required
›PREEMPTION_REQUIREMENTS and

PREEMPTION_RANK

› Evaluated when condor_negotiator

considers replacing a lower priority job

with a higher priority job

› Completely unrelated to the PREEMPT

expression (which should be called evict)

16

› MY = busy machine

› TARGET = candidate job

› If false will not preempt machine

Typically used to avoid pool thrashing

Typically use:

•RemoteUserPrio – Priority of user of currently

running job (higher is worse)

•SubmittorPrio – Priority of user of higher priority

idle job (higher is worse)

›PREEMPTION_REQUIREMENTS=FALSE

PREEMPTION_REQUIREMENTS

17

› Only replace jobs running for at least one

hour and 20% lower priority
StateTimer = \

 (CurrentTime – EnteredCurrentState)

HOUR = (60*60)

PREEMPTION_REQUIREMENTS = \

 $(StateTimer) > (1 * $(HOUR)) \

 && RemoteUserPrio > SubmittorPrio * 1.2

 NOTE: classad debug() function v. handy

PREEMPTION_REQUIREMENTS

18

› Of all claimed machines where

PREEMPTION_REQUIREMENTS is true,

picks which one machine to reclaim

› Strongly prefer preempting jobs with a large

(bad) priority and a small image size

PREEMPTION_RANK = \

 (RemoteUserPrio * 1000000)\

 - ImageSize

PREEMPTION_RANK

19

› Can be used to guarantee minimum time

› E.g. if claimed, give an hour runtime, no

matter what:

› MaxJobRetirementTime = 3600

› Can also be an expression

MaxJobRetirementTime

20

› What is the “cost” of a match?

SLOT_WEIGHT (cpus)

› What is the cost of an unclaimed pslot?

The whole rest of the machine

Leads to quantization problems

› By default, schedd splits slots

› “Consumption Policies”

Still some rough edges

Partitionable slots

21

› Manage priorities across groups of users

and jobs

› Can guarantee maximum numbers of

computers for groups (quotas)

› Supports hierarchies

› Anyone can join any group

Accounting Groups (2 kinds)

22

› In submit file

Accounting_Group = “group1”

› Treats all users as the same for priority

› Accounting groups not pre-defined

› No verification – condor trusts the job

› condor_userprio replaces user with group

Accounting Groups as Alias

23

condor_userprio –setfactor 10 group1.wisc.edu

Condor_userprio –setfactor 20 group2.wisc.edu

Note that you must get UID_DOMAIN correct

Gives group1 members 2x resources as group2

Prio factors with groups

24

› Must be predefined in cm’s config file:

GROUP_NAMES = a, b, c

GROUP_QUOTA_a = 10

GROUP_QUOTA_b = 20

› And in submit file:

Accounting_Group = a

Accounting_User = gthain

Accounting Groups w/ Quota

25

› “a” limited to 10

› “b” to 20,

› Even if idle machines

› What is the unit?

Slot weight.

› With fair share of uses within group

Strict quotas then enforce

26

› Allows groups to go over quota if idle

machines

› “Last chance” round, with every submitter

for themselves.

GROUP_AUTOREGROUP

27

28

Hierarchical Group Quotas

physics CompSci

string

theory
particle

physics
architecture DB

CMS CDF

700 200

100 500+100

200 100

100 100

ATLAS

200

29

Hierarchical Group Quotas

physics

string

theory
particle

physics

CMS CDF

700

100 500+100

200 100

ATLAS

200

GROUP_QUOTA_physics = 700

GROUP_QUOTA_physics.string_theory = 100

GROUP_QUOTA_physics.particle_physics = 600
GROUP_QUOTA_physics.particle_physics.CMS = 200

GROUP_QUOTA_physics.particle_physics.ATLAS = 200

GROUP_QUOTA_physics.particle_physics.CDF = 100

group.sub-

group.sub-sub-

group…

30

Here, unused

particle physics

surplus is shared by

ATLAS and CDF.

Hierarchical Group Quotas

physics

string

theory
particle

physics

CMS CDF

700

100 500+100

200 100

ATLAS

200

Groups configured to

accept surplus will

share it in proportion

to their quota.

2/3 surplus 1/3 surplus
GROUP_ACCEPT_SURPLUS_physics.particle_physics.ATLAS = true

GROUP_ACCEPT_SURPLUS_physics.particle_physics.CDF = true

31

Here, general

particle physics

submitters share

surplus with ATLAS

and CDF.

Hierarchical Group Quotas

physics

string

theory
particle

physics

CMS CDF

700

100 500+100

200 100

ATLAS

200

Job submitters may

belong to a parent

group in the

hierarchy.

2/4 surplus 1/4 surplus

1/4 surplus

32

Here, sub-groups

sum to 1.0, so

general particle

physics submitters

get nothing.

Hierarchical Group Quotas

physics

string

theory
particle

physics

CMS CDF

700

100 600

0.40 0.20

ATLAS

0.40

Quotas may be

specified as decimal

fractions.

0.40*600=240 0.40*600=240 0.20*600=120

GROUP_QUOTA_DYNAMIC_physics.particle_physics.CMS=0.4

33

Here, sub-groups

sum to 0.75, so

general particle

physics submitters

get 0.25 of 600.

Hierarchical Group Quotas

physics

string

theory
particle

physics

CMS CDF

700

100 600

0.30 0.15

ATLAS

0.30

Quotas may be

specified as decimal

fractions.

0.30*600=180 0.30*600=180 0.15*600=90

600-180-180-90=150

34

Here, ATLAS and

CDF have dynamic

quotas that apply to

what is left over

after the CMS static

quota is subtracted.

Hierarchical Group Quotas

physics

string

theory
particle

physics

CMS CDF

700

100 600

200 0.25

ATLAS

0.5

Static quotas may be

combined with

dynamic quotas.

0.5*(600-200)=200 0.25*(600-200)=100

600-200-200-100=100

By default, won’t preempt to make quota

But, “there’s a knob for that”
PREEMPTION_REQUIREMENTS =

(SubmitterGroupResourcesInUse <

SubmitterGroupQuota) &&

(RemoteGroupResourcesInUse >

RemoteGroupQuota) && (RemoteGroup =!=

SubmitterGroup

Preemption with HQG

35

› Group_accept_surplus = true

› Group_accept_surplus_a = true

› This is what creates hierarchy

But only for quotas

Group_accept_surplus

36

› Quotas don’t know about matching

› Assuming everything matches everything

› Surprises with partitionable slots

› Preempting multiple slots a problem

› May want to think about draining instead.

Gotchas with quotas

37

› Many ways to schedule

Summary

38

