HTCondor scheduling policy

> All kinds of mechanisms

| CENTER FOR
HIT :c: rousror 1 HIConddr

Overview of Condor Architecture

Central

Schedd A i Schedd B

Greg Jobl < Flocking Greg Job4
Greg Job2 Greg Job5
Greg Job3 Greg Job6
Ann Jobl Ann Job7
Ann Job?2 Ann Job8

Ann Job3 Joe Jobl

Manager Joe Job3

CENTER FOR
V‘
HIT :c: rousror z HIConddr

Schedd Policy: Job Priority

» Set In submit file with
>JobPriority = 7
> ... ordynamically with condor_prio cmd
» Users can set priority of their own jobs
» Integers, larger numbers are better priority

> Only impacts order between jobs for a
single user on a single schedd

» A tool for users to sort their own jobs

| CENTER FOR
v
HIT :c: rousror HIConddr

Schedd Policy: Job Rank

> Set with
> RANK = Memory

> In condor_submit file

> Not as powerful as you may think:
°* Remember steady state condition

| CENTER FOR
v
HIT :c: rousror 4 HIConddr

Concurrency Limits

> Another Central manager

» In central manager config
>FOO LIMIT = 10

> In submit file
>concurrency limits = foo

| CENTER FOR
v
HIT :c: rousror : HIConddr

~ReSl OT tNIS talk:
Provisioning, or Scheduling

» schedd sends all idle jobs to the negotiator

> Negotiator picks machines (idle or busy) to
match to these idle jobs

> How does It pick?

| CENTER FOR
v
HIT :c: rousror : HIConddr

Negotiator metric: User Priority
> Negotiator computes, stores the user prio

> View with condor userprio tool

» Inversely related to machines allocated

(lower number Is better priority)
* A user with priority of 10 will be able to claim

twice as many machines as a user with priority
20

| CENTER FOR
v
HIT :c: rousror HIConddr

What’s a user?

> Bob in scheddl same as Bob in schedd2?
» If have same UID DOMAIN, the are.
> Prevents cheating by adding shedds

> We'll talk later about other user definitions.

> Map files can define the local user name

| CENTER FOR
v
HIT :c: rousror : HIConddr

User Priority (2)

» (Effective) User Priority is determined by
multiplying two components

> Real Priority * Priority Factor

| CENTER FOR
v
HIT :c: rousror HIConddr

Real Priority

> Based on actual usage
» Starts at 0.5

> Approaches actual number of machines used
over time
* Configuration setting PRIORITY HALFLIFE

° If PRIORITY_HALFLIFE = +Inf, no history
* Default one day (in seconds)

» Asymptotically grows/shrinks to current usage

| CENTER FOR
v
HIT :c: rousror HIConddr

Priority Factor

» Assigned by administrator
* Set/viewed with condor userprio

* Persistently stored in CM

» Defaults to 100 (DEFAULT PRIO FACTOR)
* Used to default to 1

» Allows admins to give prio to sets of users, while
still having fair share within a group

> “Nice user’s have Prio Factors of 1,000,000

| CENTER FOR
v
HIT :c: rousror HIConddr

condor_userprio

> Command usage:
condor userprio —most

Effective Priority

User Name Priority Factor In Use (wghted-hrs) Last Usage
Imichael@submit-3.chtc.wisc.edu 5.00 10.00 0 16.37 0+23:46
blin@osghost.chtc.wisc.edu 7.71 10.00 0 5412.38 0+01:05
osgtest@osghost.chtc.wisc.edu 90.57 10.00 47 45505.99 <now>
cxiong36@submit-3.chtc.wisc.edu 500.00 1000.00 0 0.29 0+00:09
ojalvo@hep.wisc.edu 500.00 1000.00 0 398148.56 0+05:37
wjiangd4@submit-3.chtc.wisc.edu 500.00 1000.00 0 0.22 0+21:25
cxiong36@submit.chtc.wisc.edu 500.00 1000.00 0 63.38 0+21:42

| CENTER FOR
v
HIT :c: rousror . HIConddr

A note about Preemption

> Fundamental tension between
* Throughput vs. Fairness

> Preemption is required to have fairness

> Need to think hard about runtimes, fairness
and preemption

> Negotiator implementation preemption
> (Workers implement eviction: different)

| CENTER FOR
v
HIT :c: rousror . HIConddr

Negotiation Cycle

» Gets all the slot ads
» Updates user prio info for all users

> Based on user prio, computes submitter
limit for each user

> Foreach user, finds the schedd, gets a job
* Finds all matching machines for job

* Sorts the jobs
* Gives the job the best sorted machine

| CENTER FOR
v
HIT :c: rousror y HIConddr

Sorting slots: sort levels

NEGOTIATOR PRE JOB RANK =
RemoteOwner =?= UNDEFINED

JOB RANK = mips

NEGOTIATOR POST JOB RANK =

(RemoteOwner =7= UNDEFINED) *
(KFlops - SlotID)

| CENTER FOR
v
HIT :c: rousror . HIConddr

If Matched machine claimed,

extra checks required

> PREEMPTION REQUIREMENTS and
PREEMPTION RANK

> Evaluated when condor negotiator
considers replacing a lower priority job
with a higher priority job

» Completely unrelated to the PREEMPT
expression (which should be called evict)

| CENTER FOR
v
HIT :c: rousror HIConddr

PREEMPTION REQUIREMENTS

> MY = busy machine
> TARGET = candidate job

» If false will not preempt machine
* Typically used to avoid pool thrashing

* Typically use:
 RemoteUserPrio — Priority of user of currently
running job (higher is worse)
« SubmittorPrio — Priority of user of higher priority
Idle job (higher is worse)

> PREEMPTION REQUIREMENTS=FALSE

| CENTER FOR
v
HIT :c: rousror HIConddr

PREEMPTION REQUIREMENTS

> Only replace jobs running for at least one
hour and 20% lower priority

StateTimer = \
(CurrentTime - EnteredCurrentState)
HOUR = (60*60)
PREEMPTION REQUIREMENTS = \
$ (StateTimer) > (1 * $(HOUR)) \
&& RemoteUserPrio > SubmittorPrio * 1.2
NOTE: classad debug() function v. handy

| CENTER FOR
v
HIT :c: rousror HIConddr

PREEMPTION RANK

» Of all claimed machines where
PREEMPTION REQUIREMENTS is true,
picks which one machine to reclaim

» Strongly prefer preempting jobs with a large
(bad) priority and a small image size
PREEMPTION RANK = \

(RemoteUserPrio * 1000000)\

- ImageSize

| CENTER FOR
v
HIT :c: rousror HIConddr

MaxJobRetirementTime

» Can be used to guarantee minimum time

» E.g. If claimed, give an hour runtime, no
matter what:

> MaxJobRetirementTime = 3600
» Can also be an expression

| CENTER FOR
v
HIT :c: rousror . HIConddr

Partitionable slots

> What is the “cost” of a match?
* SLOT_WEIGHT (cpus)

> What Is the cost of an unclaimed pslot?
* The whole rest of the machine
° Leads to quantization problems

> By default, schedd splits slots

» “Consumption Policies”
* Still some rough edges

| CENTER FOR
v
HIT :c: rousror . HIConddr

Accounting Groups (2 kinds)

> Manage priorities across groups of users
and jobs

> Can guarantee maximum numbers of
computers for groups (quotas)

» Supports hierarchies
> Anyone can join any group

| CENTER FOR
v
HIT :c: rousror HIConddr

Accounting Groups as Alias

> In submit file
* Accounting_Group = “group1”

> Treats all users as the same for priority

> Accounting groups not pre-defined

> No verification — condor trusts the job

» condor_userprio replaces user with group

| CENTER FOR
v
HIT :c: rousror . HIConddr

Prio factors with groups

condor userprio —setfactor 10 groupl.wisc.edu

Condor userprio —setfactor 20 groupZ.wisc.edu

Note that you must get UID_DOMAIN correct

Gives groupl members 2x resources as group2

| CENTER FOR
v
HIT :c: rousror y HIConddr

Accounting Groups w/ Quota

> Must be predefined in cm’s config file:
GROUP NAMES = a, b, c

GROUP QUOTA a = 10

GROUP QUOTA b = 20

> And In submit file:

Accounting Group = a

Accounting User = gthain

I-IT EEEER%(ﬁROUGH PUT - I-I'ICOHM

COMPUTING

Strict quotas then enforce

» Must be predefined in cm’s config file:

> “a” limited to 10 GROUP NAMES = a, b, c

- GROUP_QUOTA a = 10
> “b” to 20 : GROUP QUOTA b = 20

> And in submit file:
Accounting Group = a

Accounting User = gthain

> Even If idle machines

> What Is the unit?
* Slot weight.

» With fair share of uses within group

| CENTER FOR
v
HIT :c: rousror . HIConddr

GROUP AUTOREGROUP

» Allows groups to go over quota if idle
machines

» “Last chance” round, with every submitter
for themselves.

| CENTER FOR
v
HIT :c: rousror . HIConddr

Hierarchical Group Quotas

700 200
[physics} [CompSci}
100 / 500+100 100 100
[St“”gl L partlcle} [architecture} [DB}
theory physics

200 200 100

e

‘B B CENTER FOR
v
HIT :c: rousror HIConddr

Hierarchical Group Quotas

700 GROUP_QUOTA _physics = 700
[physics} GROUP_QUOTA_physics.string_theory = 100

GROUP_QUOTA _physics.particle_physics = 600
GROUP_QUOTA physics.particle_physics.CMS = 200
GROUP_QUOTA physics.particle_physics.ATLAS =200

100 500+100 GROUP_QUOTA_physics.particle_physics.CDF = 100
[String} particle
theory physics

200 200 100

ows| [anss| cor

| CENTER FOR
v
HIT :c: rousror HIConddr

Hierarchical Group Quotas

700

[physics } Groups configured to

accept surplus will

ﬂ share it in proportion

100 .- °00+100 to their quota.
[strlng} particle
theory physics

200 200 100
CMS [ATLAS}[CDF}

2/3 surplus 1/3 surplus
GROUP_ACCEPT_SURPLUS_physics.particle_physics.ATLAS = true

GROUP_ACCEPT_SURPLUS_physics.particle_physics.CDF = true

| CENTER FOR
v
HIT :c: rousror HIConddr

Hierarchical Group Quotas

700]
. Job submitters may
[physms}
belong to a parent
group In the
100 J 500+100 hierarchy.
[string} L particle} 4 surolus
theory physics
200 200 100

o [Arus| cor

2/4 surplus 1/4 surplus

| CENTER FOR
v
HIT :c: rousror HIConddr

Hierarchical Group Quotas

L Quotas may be
[physms} specified as decimal
fractions.
100 / 600
[string} L particle}
theory physics

0.40 0.20

(s (coF

0.40*600=240 0.40*600=240 0.20*600=120

0.40

GROUP_QUOTA_DYNAMIC physics.particle_physics.CMS=0.4

| CENTER FOR
v
HIT :c: rousror HIConddr

Hierarchical Group Quotas

[physiz:oso] _(_Quotas may be
specified as decimal
fractions.
100 : v 609 600-180-180-90=150
[strlng} L partlc_:le}
theory physics

0.30 0.15
[ATLAS}[CDF}

0.30*600=180 0.30*600=180 0.15*600=90

0.30

| CENTER FOR
v
HIT :c: rousror HIConddr

Hierarchical Group Quotas

[physiz:osol Static quotgs may _be
combined with
dynamic quotas.
100 .- 409 606.200-200-100=100
[strlng} L partlc_:le}
theory physics

0.5 0.25

(aruas| cor

0.5*(600-200)=200 0.25*(600—200)=100I

200

| CENTER FOR
v
HIT :c: rousror HIConddr

Preemption with HQG

By default, won’t preempt to make quota

But, “there’s a knob for that”

PREEMPTION REQUIREMENTS =
(SubmitterGroupResourcesInUse <
SubmitterGroupQuota) &&
(RemoteGroupResourcesInUse >
RemoteGroupQuota) && (RemoteGroup =!=
SubmitterGroup

| CENTER FOR
v
HIT :c: rousror . HIConddr

Group_accept_surplus

» Group_accept_surplus = true
» Group_accept_surplus_a = true

» This Is what creates hierarchy
° But only for quotas

| CENTER FOR
v
HIT :c: rousror . HIConddr

Gotchas with quotas

> Quotas don’t know about matching

» Assuming everything matches everything
» Surprises with partitionable slots

> Preempting multiple slots a problem

> May want to think about draining instead.

| CENTER FOR
v
HIT :c: rousror . HIConddr

Summary

> Many ways to schedule

| CENTER FOR
W g— 38 HTCondor

