
HTCondor

Security

Mechanisms

Overview

“Padlock” by Peter Ford © 2005

Licensed under the Creative Commons Attribution 2.0 license

http://www.flickr.com/photos/peterf/72583027/

http://www.webcitation.org/5XIiBcsUg

2

HTCondor Security

› Allows authentication of

users and daemons

› Encryption over the

network

› Integrity checking over

the network

“locks-masterlocks.jpg” by Brian De Smet, © 2005
Used with permission.
http://www.fief.org/sysadmin/blosxom.cgi/2005/07/21#locks

3

Authorization

› HTCondor users ALLOW / DENY lists to

control authorization

› There are different levels of access in

HTCondor, and each can have a separate

authorization list and security policy.

4

Authorization

› Possible values for authorization levels:
CLIENT

READ

WRITE

CONFIG

ADMINISTRATOR

OWNER

DAEMON

NEGOTIATOR

5

Authorization Levels

› READ

querying information

condor_status, condor_q, etc

› WRITE

updating information

condor_submit, adding nodes to a pool,
sending ClassAds to the collector, etc

Includes READ

6

Authorization Levels

› ADMINISTRATOR

Administrative commands

condor_on, condor_off,

condor_reconfig, condor_restart, etc.

Includes READ and WRITE

7

Authorization Levels

› DAEMON

Daemon to daemon communications

Includes READ and WRITE

› NEGOTIATOR

condor_negotiator to other daemons

Includes READ

8

Authorization

The full hierarchy of authorization levels:

READ

WRITE

DAEMON ADMINISTRATOR

CONFIG OWNER

CLIENT

NEGOTIATOR

9

Authorization

› There is a separate ALLOW / DENY list for each

authorization level.

› DENY takes preference over ALLOW

ALLOW_READ = *

ALLOW_WRITE = *.cs.wisc.edu

DENY_WRITE = zeroday.cs.wisc.edu

ALLOW_ADMINISTRATOR = condor.cs.wisc.edu

10

Host-based Authorization

› More Examples:

ALLOW_WRITE = *

ALLOW_WRITE = goose.cs.wisc.edu

ALLOW_WRITE = *.cs.wisc.edu

ALLOW_WRITE = 128.105.*

ALLOW_WRITE = 128.105.0.0/16

11

Host-based Authorization

› Each entry is a comma-separated list.

› Wildcards are allowed only at the beginning of
hostnames or at the end of IP addresses.

› Subnets are supported using a / and number of
significant bits.

HOSTALLOW_WRITE = *.cs.wisc.edu, *.engr.wisc.edu

HOSTALLOW_WRITE = 128.105.*, *.engr.wisc.edu, 128.105.64.0/18

12

Host-based Authorization

› This is the default setup, which has some

shortcomings but is easy to configure.

› Allows you to specify capabilities by

hostname, IP address, and/or subnet.

13

Problems With Default Installation

› Host-based granularity is too big

Any user who can login to central manager has

“Administrator” privileges
 HOSTALLOW_ADMINISTRATOR = $(CONDOR_HOST)

Any user on an execute machine can evict the

job on that machine via condor_vacate
 HOSTALLOW_OWNER = $(FULL_HOSTNAME)

14

Problems With Default Installation

› Most connections are NOT authenticated

Queue management commands (condor_submit,

condor_hold, etc.) are because Condor explicitly forces

authentication.

Daemon-to-daemon commands are not.

It is possible to send false information to the collector

and other denials of service

15

Problems With Default Installation

› Traffic is not encrypted or checked for

integrity.

Possibility of someone eavesdropping on your

traffic, including files transferred to or from

execute machine

Possibility of someone modifying your traffic

without detection

16

Security Policy Configuration

› Condor provides many mechanisms to

address the previous shortcomings:

Many authentication methods

Strong encryption

Signed checksums for integrity

17

Security Policy Configuration

› Condor will negotiate security requirements

and supported methods

client
server

I want to submit a job

You must authenticate w/ kerberos

KERBEROS

normal submit protocol

18

Security Policy Configuration

Default Policy
SEC_DEFAULT_ENCRYPTION = OPTIONAL

SEC_DEFAULT_INTEGRITY = OPTIONAL

SEC_DEFAULT_AUTHENTICATION = OPTIONAL

SEC_DEFAULT_AUTHENTICATION_METHODS = FS, GSI, KERBEROS, SSL, PASSWORD #UNIX

SEC_DEFAULT_AUTHENTICATION_METHODS = NTSSPI, KERBEROS, SSL, PASSWORD #WIN32

19

Security Policy Configuration

Default Policy

Possible Policy Values
NEVER do not allow this to happen

OPTIONAL do not request it, but allow it

PREFFERED request it, but do not require it

REQUIRED this is mandatory

SEC_DEFAULT_ENCRYPTION = OPTIONAL

SEC_DEFAULT_INTEGRITY = OPTIONAL

SEC_DEFAULT_AUTHENTICATION = OPTIONAL

SEC_DEFAULT_AUTHENTICATION_METHODS = FS, GSI, KERBEROS, SSL, PASSWORD #UNIX

SEC_DEFAULT_AUTHENTICATION_METHODS = NTSSPI, KERBEROS, SSL, PASSWORD #WIN32

20

Security Policy Configuration

Y Y Y X

Y Y Y N

Y Y N N

X N N N

R P O N

Required

Preferred

Optional

Never

Client

Policy

Server Policy

Policy Reconciliation

21

Security Policy Configuration

Policy Reconciliation Example

 CLIENT POLICY
SEC_DEFAULT_ENCRYPTION = OPTIONAL

SEC_DEFAULT_INTEGRITY = OPTIONAL

SEC_DEFAULT_AUTHENTICATION = OPTIONAL

SEC_DEFAULT_AUTHENTICATION_METHODS = FS, GSI, KERBEROS, SSL, PASSWORD

 SERVER POLICY
 SEC_DEFAULT_ENCRYPTION = REQUIRED

 SEC_DEFAULT_INTEGRITY = REQUIRED

 SEC_DEFAULT_AUTHENTICATION = REQUIRED

 SEC_DEFAULT_AUTHENTICATION_METHODS = SSL

 RECONCILED POLICY
 ENCRYPTION = YES

 INTEGRITY = YES

 AUTHENTICATION = YES

 METHODS = SSL

22

Security Policy Configuration

Once you have authenticated users, you may

use a more fine-grained authorization list:

 ALLOW_WRITE = zmiller@cs.wisc.edu

 ALLOW_WRITE = zmiller@cs.wisc.edu/goose.cs.wisc.edu

 ALLOW_WRITE = zmiller@cs.wisc.edu/*.cs.wisc.edu

23

Security Policy Configuration

› Format of canonical username:

 user@domain/host

› One wildcard allowed in the user@domain
portion, and one allowed in the host portion

› If there is no ‘/’ character, Condor will do one of
two things:
If there is an ‘@’ character, it is assumed to be a

username, and maps to user@domain/*

If there is no ‘@’, it is assumed to be a hostname and
maps to */hostname

24

Example Policies

› Allow anyone from wisc.edu:

ALLOW_READ=*.wisc.edu

› Allow any authenticated local user:

ALLOW_READ=*@wisc.edu/*.wisc.edu

› Allow specific user/machine

ALLOW_NEGOTIATOR= \

daemon@wisc.edu/condor.wisc.edu

25

AUTHENTICATION_METHODS

› How to authenticate users and daemons?

NTSSPI – Microsoft Windows

FS – (UNIX) Local file system

FS_REMOTE – (UNIX) Network file system

CLAIMTOBE – Insecure, for testing

ANONYMOUS – Insecure

PASSWORD – Shared secret

SSL – Public key encryption

Kerberos – Requires existing KDC setup

GSI – Globus/Grid Security Infrastructure

26

NTSSPI

Microsoft Windows
› Only works on Windows

› Password must be the same on both

systems

› No configuration required

27

FS: File System

› Checks that the user can create a

directory owned by the user.

Only works on local

 machine (uses /tmp)

Assumes filesystem

 is trustworthy

› No configuration required

“Hard drive” by Robbie Sproule © 2005
Licensed under the Creative Commons Attribution 2.0 license
http://www.flickr.com/photos/robbie1/73032053/ http://www.webcitation.org/5XQVcvsyYs

28

FS_REMOTE

› Checks that the user can create a

directory owned by the user on a shared

filesystem

Works across machines

Assumes filesystem

 is trustworthy!!! THIS IS

 NOT ALWAYS TRUE!

Target directory must be

 properly configured.
“Hard drive” by Robbie Sproule © 2005
Licensed under the Creative Commons Attribution 2.0 license
http://www.flickr.com/photos/robbie1/73032053/ http://www.webcitation.org/5XQVcvsyYs

29

CLAIMTOBE

› CLAIMTOBE - Just what it sounds like

Allows client to send any ID

Very insecure

Useful for testing

30

PASSWORD

› Shared secret

› Only suitable for daemon-to-daemon

communications, not for authenticating end

users

› Always authenticates as principle

“condor_pool@$(UID_DOMAIN)”

› Simple

› Works on both UNIX (using filesystem

protection) and Windows (using secure

registry storage)

31

SSL

› Public key encryption system

› Daemons and users have X.509 certificates

› Flexible – all Condor daemons in pool can

share one certificate, or use one cert per host.

› Map file transforms X.509 distinguished name

into an identity (see later slides on mapping)

32

Kerberos

 and GSI

› Complex to set up

› Useful if you already

use one of these

systems

› The most secure

methods HTCondor

provides (along with

SSL)
“two locks and a seed” by “Darwin Bell” © 2005
Licensed under the Creative Commons Attribution 2.0 license
http://www.flickr.com/photos/darwinbell/321434315/ http://www.webcitation.org/5XQW02h8V

33

Security Policy Configuration

› Map file controls how credentials are mapped to
HTCondor user principals.

› In your condor_config:

 CERTIFICATE_MAPFILE = /path/to/mapfile

› Each line is a mapping rule.

› Each rule has three fields:

 method regex mapped_name

 (any field with spaces should be quoted)

34

Security Policy Configuration

› Some example map file entries:

 (These should be one line, they are split here)

SSL

 “/C=US/ST=Wisconsin/L=Madison/O=University of Wisconsin -- Madison/O=Computer

Sciences Department/OU=Condor Project/CN=Zach Miller/Email=zmiller@cs.wisc.edu”

 zmiller@cs.wisc.edu

SSL

 “/C=US/ST=Wisconsin/L=Madison/O=University of Wisconsin -- Madison/O=Computer

Sciences Department/OU=Condor Project/CN=Todd Tannenbaum/Email=tannenba@cs.wisc.edu”

 tannenba@cs.wisc.edu

Etc.

35

Security Policy Configuration

› Example with Regular Expression:

RegEx matches and sub-matches can be

referenced using \1, \2, etc.

The map file gives you a canonical name from

the authenticated user:

 SSL Email=(.*) \1

“/C=US/ST=Wisconsin/L=Madison/O=University of Wisconsin –

Madison/O=Computer Sciences Department/OU=Condor Project

/CN=Zach Miller/Email=zmiller@cs.wisc.edu”

zmiller@cs.wisc.edu

36

Security Policy Configuration

› Default map file:
(each line is <method> <regex> <mappedname>)

FS (.*) \1

FS_REMOTE (.*) \1

GSI (.*) GSS_ASSIST_GRIDMAP (Special Token to call Globus)

SSL (.*) unmapped

KERBEROS (.*) \1

NTSSPI (.*) \1

CLAIMTOBE (.*) \1

ANONYMOUS (.*) CONDOR_ANONYMOUS

PASSWORD (.*) \1

37

Example Security Configuration

› Let’s put it all together with an example.

› Desired policy, in English:

Authenticate, encrypt, and do integrity checks

on everything.

Use SSL authentication for daemon-to-

daemon communication

Use FS (or SSL) authentication for users so

that we don’t need to issue certs to everyone.

38

condor_submit

condor_q

condor_rm

…

schedd

central

manager

startd

39

Example Security Configuration

Turn on all security options:

SEC_DEFAULT_AUTHENTICATION=REQUIRED

SEC_DEFAULT_ENCRYPTION=REQUIRED

SEC_DEFAULT_INTEGRITY=REQUIRED

40

Example Security Configuration

Specify allowed methods:

SEC_DEFAULT_AUTHENTICATION_METHODS = FS, SSL

SEC_DAEMON_AUTHENTICATION_METHODS = SSL

› Requires giving your daemons an X.509 certificates

› You will also need a map file for SSL distinguished

names. Let’s assume the daemon cert maps to

daemon@wisc.edu.

› Let’s also assume the admin has a cert that maps

to admin@wisc.edu

41

Example Security Configuration

ALLOW_READ = *.wisc.edu

ALLOW_WRITE= *.wisc.edu

ALLOW_ADMINISTRATOR =

admin@wisc.edu/*.wisc.edu,

$(CONDOR_HOST)

42

Example Security Configuration

ALLOW_DAEMON =

daemon@wisc.edu/*.wisc.edu

ALLOW_NEGOTIATOR =

daemon@wisc.edu/$(CONDOR_HOST)

43

Users without Certificates

› Using FS authentication these users

can submit jobs and view the queue on

the local schedd

› condor_q –analyze and

condor_status won’t work for normal

users without an X.509 certificate

Requires READ access to

condor_collector

› FS won’t work across the network!

› How to let anyone read any daemon?

44

condor_submit

condor_q

condor_rm

…

schedd

central

manager

startd

45

Allow Any User Read Access

› One option: Allow weak methods for READ:

SEC_READ_AUTHENTICATION_METHODS =

 FS, SSL, CLAIMTOBE

SEC_CLIENT_AUTHENTICATION_METHODS =

 FS, SSL, CLAIMTOBE

› Or, just don’t require authentication at all for

READ commands:

SEC_READ_AUTHENTICATION = OPTIONAL

46

Example, on one page

SEC_DEFAULT_AUTHENTICATION = REQUIRED

SEC_DEFAULT_AUTHENTICATION_METHODS = FS, SSL

SEC_DEFAULT_ENCRYPTION = REQUIRED

SEC_DEFAULT_INTEGRITY = REQUIRED

SEC_READ_AUTHENTICATION = OPTIONAL

SEC_DAEMON_AUTHENTICATION_METHODS = SSL

ALLOW_READ = *.wisc.edu

ALLOW_WRITE= *.wisc.edu

ALLOW_ADMINISTRATOR = admin@wisc.edu/*.wisc.edu, \

$(CONDOR_HOST)

ALLOW_DAEMON = daemon@wisc.edu/*.wisc.edu

ALLOW_NEGOTIATOR = daemon@wisc.edu/$(CONDOR_HOST)

47

Require authentication, encryption, integrity

use SECURITY: Strong

By default, must authenticate via filesystem

or pool password

SEC_DEFAULT_AUTHENTICATION_METHODS = FS, PASSWORD

Allow READ level access (e.g. condor_status)

with ANONYMOUS authentication

SEC_READ_AUTHENTICATION_METHODS = \

 $(SEC_DEFAULT_AUTHENTICATION_METHODS), ANONYMOUS

Have tools like condor_status attempt ANONYMOUS

authentication so that condor_status will work

from any machine in the pool.

SEC_CLIENT_AUTHENTICATION_METHODS = \

 $(SEC_DEFAULT_AUTHENTICATION_METHODS), ANONYMOUS

SEC_PASSWORD_FILE = /etc/condor/poolpassword

Todd’s Shared Secret Formula

48

Conclusion

Attached to Indico is Zach’s step-by-step

securing via SSL with your own CA talk…

… but this is overly complex IMO. Plan on

adding security cut-n-paste HOWTOs on

wiki.htcondor.org… and hopefully some

simpler ‘meta-knobs’ that lean more on

convention than configuration.

