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SM phase diagram
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Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [111] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.1GeV + 2.0(Mt � 173.10GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (64)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-
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[Buttazzo et al. (2013)]
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Figure 2: Upper: RG evolution of � (left) and of �� (right) varying Mt, ↵3(MZ), Mh by
±3�. Lower: Same as above, with more “physical” normalisations. The Higgs quartic coupling
is compared with the top Yukawa and weak gauge coupling through the ratios sign(�)

p
4|�|/yt

and sign(�)
p

8|�|/g2, which correspond to the ratios of running masses mh/mt and mh/mW ,
respectively (left). The Higgs quartic �-function is shown in units of its top contribution, ��(top
contribution) = �3y4t /8⇡

2 (right). The grey shadings cover values of the RG scale above the
Planck mass MPl ⇡ 1.2⇥ 1019 GeV, and above the reduced Planck mass M̄Pl = MPl/

p
8⇡.
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Effective Potential (EP)
• Provides a geometrical language for the survey of the vacuum structure of a QFT

[Schwinger (1951), Jona-Lasinio (1964), Coleman, Weinberg (1973) ]

[www.quantumdiaries.org]
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Background field method (BFM)
• The EP is most conveniently computed with the BFM [Jackiw (1974)]

1 Introduction

�(x) = �
c

+ �(x) (1)

eiW [j] =

Z
D� ei

R
d

4
x(L(�)+j�) (2)

With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the
physical content of the e↵ective potential by means of the so-called Nielsen identities [30].
In particular, the issue of the gauge dependence of the e↵ective potential in the analysis of the
SM vacuum stability was already pointed out at the end of the 90’s by Loinaz and Willey [41],
which challenged the possibility of setting gauge-independent lower bounds on the Higgs boson
mass from vacuum stability constraints. More recently, the problematic identification between the
cuto↵ scale of the SM and the instability scale ⇤ was mentioned again in Ref. [42].

The aim of this paper is to clarify some issues related to the gauge dependence of the quantities
entering the vacuum stability analysis. While the critical value of the Higgs boson mass, marking
the transition between the stable/unstable phase of the SM, can be formally proven to be gauge
independent, the SM instability scale is actually gauge dependent. This is explicitly shown by a
direct calculation of the gauge dependent one-loop e↵ective potential in the SM.
The SM e↵ective potential is known in the Landau gauge at one [24] and two loops [43, 44] since
long. Recently, even the three-loop QCD and top-Yukawa corrections have been included [45].
On the other hand, calculations of the SM e↵ective potential beyond the Landau gauge are less
explored. Barring few exceptions, like for instance in Ref. [46] where a background-field-dependent
gauge fixing with a single gauge-fixing parameter was employed, the gauge dependence of the SM
e↵ective potential is usually not taken into consideration.

The paper is organized as follows: in Sect. 2 we provide a pedagogical derivation of the SM
one-loop e↵ective potential in the Fermi gauge (generalized Lorentz gauge) and consider its renor-
malization group (RG) improvement. In Sect. 3 we discuss the physical observables entering the
vacuum stability analysis. In particular, by using the Nielsen identity [30], we formally prove that
the lower bound on the Higgs boson mass derived from the electroweak-vacuum-stability condition
is gauge independent. On the other hand, the extrema of the e↵ective potential and, in particular,
the instability scale are in general gauge dependent. In Sect. 4 we numerically quantify at the
next-to-leading order (NLO) accuracy the gauge dependence of ⇤ in the Fermi gauge by varying
the gauge-fixing parameters in their perturbative domain and comment on the gauge-fixing scheme
dependence of ⇤. The interpretation and the physical implications of the gauge dependence of ⇤
are discussed in Sect. 5. The two-loop renormalization group equations (RGEs) of the SM pa-
rameters in the Fermi gauge are collected in Appendix A, while in Appendix B we report on the
calculation of the SM one-loop e↵ective potential in a background R

⇠

gauge with the most general

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.
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With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the
physical content of the e↵ective potential by means of the so-called Nielsen identities [30].
In particular, the issue of the gauge dependence of the e↵ective potential in the analysis of the
SM vacuum stability was already pointed out at the end of the 90’s by Loinaz and Willey [41],
which challenged the possibility of setting gauge-independent lower bounds on the Higgs boson
mass from vacuum stability constraints. More recently, the problematic identification between the
cuto↵ scale of the SM and the instability scale ⇤ was mentioned again in Ref. [42].

The aim of this paper is to clarify some issues related to the gauge dependence of the quantities
entering the vacuum stability analysis. While the critical value of the Higgs boson mass, marking
the transition between the stable/unstable phase of the SM, can be formally proven to be gauge
independent, the SM instability scale is actually gauge dependent. This is explicitly shown by a
direct calculation of the gauge dependent one-loop e↵ective potential in the SM.
The SM e↵ective potential is known in the Landau gauge at one [24] and two loops [43, 44] since
long. Recently, even the three-loop QCD and top-Yukawa corrections have been included [45].
On the other hand, calculations of the SM e↵ective potential beyond the Landau gauge are less
explored. Barring few exceptions, like for instance in Ref. [46] where a background-field-dependent
gauge fixing with a single gauge-fixing parameter was employed, the gauge dependence of the SM
e↵ective potential is usually not taken into consideration.

The paper is organized as follows: in Sect. 2 we provide a pedagogical derivation of the SM
one-loop e↵ective potential in the Fermi gauge (generalized Lorentz gauge) and consider its renor-
malization group (RG) improvement. In Sect. 3 we discuss the physical observables entering the
vacuum stability analysis. In particular, by using the Nielsen identity [30], we formally prove that
the lower bound on the Higgs boson mass derived from the electroweak-vacuum-stability condition
is gauge independent. On the other hand, the extrema of the e↵ective potential and, in particular,
the instability scale are in general gauge dependent. In Sect. 4 we numerically quantify at the
next-to-leading order (NLO) accuracy the gauge dependence of ⇤ in the Fermi gauge by varying
the gauge-fixing parameters in their perturbative domain and comment on the gauge-fixing scheme

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.
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With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the
physical content of the e↵ective potential by means of the so-called Nielsen identities [30].
In particular, the issue of the gauge dependence of the e↵ective potential in the analysis of the
SM vacuum stability was already pointed out at the end of the 90’s by Loinaz and Willey [41],
which challenged the possibility of setting gauge-independent lower bounds on the Higgs boson
mass from vacuum stability constraints. More recently, the problematic identification between the
cuto↵ scale of the SM and the instability scale ⇤ was mentioned again in Ref. [42].

The aim of this paper is to clarify some issues related to the gauge dependence of the quantities
entering the vacuum stability analysis. While the critical value of the Higgs boson mass, marking
the transition between the stable/unstable phase of the SM, can be formally proven to be gauge
independent, the SM instability scale is actually gauge dependent. This is explicitly shown by a
direct calculation of the gauge dependent one-loop e↵ective potential in the SM.
The SM e↵ective potential is known in the Landau gauge at one [24] and two loops [43, 44] since
long. Recently, even the three-loop QCD and top-Yukawa corrections have been included [45].
On the other hand, calculations of the SM e↵ective potential beyond the Landau gauge are less
explored. Barring few exceptions, like for instance in Ref. [46] where a background-field-dependent
gauge fixing with a single gauge-fixing parameter was employed, the gauge dependence of the SM
e↵ective potential is usually not taken into consideration.

The paper is organized as follows: in Sect. 2 we provide a pedagogical derivation of the SM
one-loop e↵ective potential in the Fermi gauge (generalized Lorentz gauge) and consider its renor-
malization group (RG) improvement. In Sect. 3 we discuss the physical observables entering the
vacuum stability analysis. In particular, by using the Nielsen identity [30], we formally prove that
the lower bound on the Higgs boson mass derived from the electroweak-vacuum-stability condition
is gauge independent. On the other hand, the extrema of the e↵ective potential and, in particular,
the instability scale are in general gauge dependent. In Sect. 4 we numerically quantify at the

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.
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Background field method (BFM)
• The EP is most conveniently computed with the BFM [Jackiw (1974)]

1 Introduction
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With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the
physical content of the e↵ective potential by means of the so-called Nielsen identities [30].
In particular, the issue of the gauge dependence of the e↵ective potential in the analysis of the
SM vacuum stability was already pointed out at the end of the 90’s by Loinaz and Willey [41],
which challenged the possibility of setting gauge-independent lower bounds on the Higgs boson
mass from vacuum stability constraints. More recently, the problematic identification between the
cuto↵ scale of the SM and the instability scale ⇤ was mentioned again in Ref. [42].

The aim of this paper is to clarify some issues related to the gauge dependence of the quantities
entering the vacuum stability analysis. While the critical value of the Higgs boson mass, marking
the transition between the stable/unstable phase of the SM, can be formally proven to be gauge
independent, the SM instability scale is actually gauge dependent. This is explicitly shown by a
direct calculation of the gauge dependent one-loop e↵ective potential in the SM.
The SM e↵ective potential is known in the Landau gauge at one [24] and two loops [43, 44] since
long. Recently, even the three-loop QCD and top-Yukawa corrections have been included [45].
On the other hand, calculations of the SM e↵ective potential beyond the Landau gauge are less
explored. Barring few exceptions, like for instance in Ref. [46] where a background-field-dependent
gauge fixing with a single gauge-fixing parameter was employed, the gauge dependence of the SM
e↵ective potential is usually not taken into consideration.

The paper is organized as follows: in Sect. 2 we provide a pedagogical derivation of the SM
one-loop e↵ective potential in the Fermi gauge (generalized Lorentz gauge) and consider its renor-
malization group (RG) improvement. In Sect. 3 we discuss the physical observables entering the
vacuum stability analysis. In particular, by using the Nielsen identity [30], we formally prove that
the lower bound on the Higgs boson mass derived from the electroweak-vacuum-stability condition
is gauge independent. On the other hand, the extrema of the e↵ective potential and, in particular,
the instability scale are in general gauge dependent. In Sect. 4 we numerically quantify at the
next-to-leading order (NLO) accuracy the gauge dependence of ⇤ in the Fermi gauge by varying
the gauge-fixing parameters in their perturbative domain and comment on the gauge-fixing scheme
dependence of ⇤. The interpretation and the physical implications of the gauge dependence of ⇤
are discussed in Sect. 5. The two-loop renormalization group equations (RGEs) of the SM pa-
rameters in the Fermi gauge are collected in Appendix A, while in Appendix B we report on the
calculation of the SM one-loop e↵ective potential in a background R

⇠

gauge with the most general

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.
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With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the
physical content of the e↵ective potential by means of the so-called Nielsen identities [30].
In particular, the issue of the gauge dependence of the e↵ective potential in the analysis of the
SM vacuum stability was already pointed out at the end of the 90’s by Loinaz and Willey [41],
which challenged the possibility of setting gauge-independent lower bounds on the Higgs boson
mass from vacuum stability constraints. More recently, the problematic identification between the
cuto↵ scale of the SM and the instability scale ⇤ was mentioned again in Ref. [42].

The aim of this paper is to clarify some issues related to the gauge dependence of the quantities
entering the vacuum stability analysis. While the critical value of the Higgs boson mass, marking
the transition between the stable/unstable phase of the SM, can be formally proven to be gauge
independent, the SM instability scale is actually gauge dependent. This is explicitly shown by a
direct calculation of the gauge dependent one-loop e↵ective potential in the SM.
The SM e↵ective potential is known in the Landau gauge at one [24] and two loops [43, 44] since
long. Recently, even the three-loop QCD and top-Yukawa corrections have been included [45].
On the other hand, calculations of the SM e↵ective potential beyond the Landau gauge are less
explored. Barring few exceptions, like for instance in Ref. [46] where a background-field-dependent
gauge fixing with a single gauge-fixing parameter was employed, the gauge dependence of the SM
e↵ective potential is usually not taken into consideration.

The paper is organized as follows: in Sect. 2 we provide a pedagogical derivation of the SM
one-loop e↵ective potential in the Fermi gauge (generalized Lorentz gauge) and consider its renor-
malization group (RG) improvement. In Sect. 3 we discuss the physical observables entering the
vacuum stability analysis. In particular, by using the Nielsen identity [30], we formally prove that
the lower bound on the Higgs boson mass derived from the electroweak-vacuum-stability condition
is gauge independent. On the other hand, the extrema of the e↵ective potential and, in particular,
the instability scale are in general gauge dependent. In Sect. 4 we numerically quantify at the
next-to-leading order (NLO) accuracy the gauge dependence of ⇤ in the Fermi gauge by varying
the gauge-fixing parameters in their perturbative domain and comment on the gauge-fixing scheme

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.
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With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the
physical content of the e↵ective potential by means of the so-called Nielsen identities [30].
In particular, the issue of the gauge dependence of the e↵ective potential in the analysis of the
SM vacuum stability was already pointed out at the end of the 90’s by Loinaz and Willey [41],
which challenged the possibility of setting gauge-independent lower bounds on the Higgs boson
mass from vacuum stability constraints. More recently, the problematic identification between the
cuto↵ scale of the SM and the instability scale ⇤ was mentioned again in Ref. [42].

The aim of this paper is to clarify some issues related to the gauge dependence of the quantities
entering the vacuum stability analysis. While the critical value of the Higgs boson mass, marking
the transition between the stable/unstable phase of the SM, can be formally proven to be gauge
independent, the SM instability scale is actually gauge dependent. This is explicitly shown by a
direct calculation of the gauge dependent one-loop e↵ective potential in the SM.
The SM e↵ective potential is known in the Landau gauge at one [24] and two loops [43, 44] since
long. Recently, even the three-loop QCD and top-Yukawa corrections have been included [45].
On the other hand, calculations of the SM e↵ective potential beyond the Landau gauge are less
explored. Barring few exceptions, like for instance in Ref. [46] where a background-field-dependent
gauge fixing with a single gauge-fixing parameter was employed, the gauge dependence of the SM
e↵ective potential is usually not taken into consideration.

The paper is organized as follows: in Sect. 2 we provide a pedagogical derivation of the SM
one-loop e↵ective potential in the Fermi gauge (generalized Lorentz gauge) and consider its renor-
malization group (RG) improvement. In Sect. 3 we discuss the physical observables entering the
vacuum stability analysis. In particular, by using the Nielsen identity [30], we formally prove that
the lower bound on the Higgs boson mass derived from the electroweak-vacuum-stability condition
is gauge independent. On the other hand, the extrema of the e↵ective potential and, in particular,
the instability scale are in general gauge dependent. In Sect. 4 we numerically quantify at the

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.
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2.  Gaussian path integral (one-loop approx.)

1.  Change of variable in the path-integral expression of the generating functional 1 Introduction
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With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the
physical content of the e↵ective potential by means of the so-called Nielsen identities [30].
In particular, the issue of the gauge dependence of the e↵ective potential in the analysis of the
SM vacuum stability was already pointed out at the end of the 90’s by Loinaz and Willey [41],
which challenged the possibility of setting gauge-independent lower bounds on the Higgs boson
mass from vacuum stability constraints. More recently, the problematic identification between the
cuto↵ scale of the SM and the instability scale ⇤ was mentioned again in Ref. [42].

The aim of this paper is to clarify some issues related to the gauge dependence of the quantities
entering the vacuum stability analysis. While the critical value of the Higgs boson mass, marking
the transition between the stable/unstable phase of the SM, can be formally proven to be gauge
independent, the SM instability scale is actually gauge dependent. This is explicitly shown by a
direct calculation of the gauge dependent one-loop e↵ective potential in the SM.
The SM e↵ective potential is known in the Landau gauge at one [24] and two loops [43, 44] since
long. Recently, even the three-loop QCD and top-Yukawa corrections have been included [45].
On the other hand, calculations of the SM e↵ective potential beyond the Landau gauge are less
explored. Barring few exceptions, like for instance in Ref. [46] where a background-field-dependent
gauge fixing with a single gauge-fixing parameter was employed, the gauge dependence of the SM
e↵ective potential is usually not taken into consideration.

The paper is organized as follows: in Sect. 2 we provide a pedagogical derivation of the SM
one-loop e↵ective potential in the Fermi gauge (generalized Lorentz gauge) and consider its renor-
malization group (RG) improvement. In Sect. 3 we discuss the physical observables entering the
vacuum stability analysis. In particular, by using the Nielsen identity [30], we formally prove that

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.

2

 Luca Di Luzio (KIT) - On the gauge dependence of the SM vacuum instability scale    04/13



Background field method (BFM)
• The EP is most conveniently computed with the BFM [Jackiw (1974)]
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With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the
physical content of the e↵ective potential by means of the so-called Nielsen identities [30].
In particular, the issue of the gauge dependence of the e↵ective potential in the analysis of the
SM vacuum stability was already pointed out at the end of the 90’s by Loinaz and Willey [41],
which challenged the possibility of setting gauge-independent lower bounds on the Higgs boson
mass from vacuum stability constraints. More recently, the problematic identification between the
cuto↵ scale of the SM and the instability scale ⇤ was mentioned again in Ref. [42].

The aim of this paper is to clarify some issues related to the gauge dependence of the quantities
entering the vacuum stability analysis. While the critical value of the Higgs boson mass, marking
the transition between the stable/unstable phase of the SM, can be formally proven to be gauge
independent, the SM instability scale is actually gauge dependent. This is explicitly shown by a
direct calculation of the gauge dependent one-loop e↵ective potential in the SM.
The SM e↵ective potential is known in the Landau gauge at one [24] and two loops [43, 44] since
long. Recently, even the three-loop QCD and top-Yukawa corrections have been included [45].
On the other hand, calculations of the SM e↵ective potential beyond the Landau gauge are less
explored. Barring few exceptions, like for instance in Ref. [46] where a background-field-dependent
gauge fixing with a single gauge-fixing parameter was employed, the gauge dependence of the SM
e↵ective potential is usually not taken into consideration.

The paper is organized as follows: in Sect. 2 we provide a pedagogical derivation of the SM
one-loop e↵ective potential in the Fermi gauge (generalized Lorentz gauge) and consider its renor-
malization group (RG) improvement. In Sect. 3 we discuss the physical observables entering the
vacuum stability analysis. In particular, by using the Nielsen identity [30], we formally prove that

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.
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With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the
physical content of the e↵ective potential by means of the so-called Nielsen identities [30].
In particular, the issue of the gauge dependence of the e↵ective potential in the analysis of the
SM vacuum stability was already pointed out at the end of the 90’s by Loinaz and Willey [41],
which challenged the possibility of setting gauge-independent lower bounds on the Higgs boson
mass from vacuum stability constraints. More recently, the problematic identification between the
cuto↵ scale of the SM and the instability scale ⇤ was mentioned again in Ref. [42].

The aim of this paper is to clarify some issues related to the gauge dependence of the quantities
entering the vacuum stability analysis. While the critical value of the Higgs boson mass, marking
the transition between the stable/unstable phase of the SM, can be formally proven to be gauge
independent, the SM instability scale is actually gauge dependent. This is explicitly shown by a
direct calculation of the gauge dependent one-loop e↵ective potential in the SM.
The SM e↵ective potential is known in the Landau gauge at one [24] and two loops [43, 44] since
long. Recently, even the three-loop QCD and top-Yukawa corrections have been included [45].
On the other hand, calculations of the SM e↵ective potential beyond the Landau gauge are less
explored. Barring few exceptions, like for instance in Ref. [46] where a background-field-dependent
gauge fixing with a single gauge-fixing parameter was employed, the gauge dependence of the SM
e↵ective potential is usually not taken into consideration.

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.
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With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the
physical content of the e↵ective potential by means of the so-called Nielsen identities [30].
In particular, the issue of the gauge dependence of the e↵ective potential in the analysis of the
SM vacuum stability was already pointed out at the end of the 90’s by Loinaz and Willey [41],
which challenged the possibility of setting gauge-independent lower bounds on the Higgs boson
mass from vacuum stability constraints. More recently, the problematic identification between the
cuto↵ scale of the SM and the instability scale ⇤ was mentioned again in Ref. [42].

The aim of this paper is to clarify some issues related to the gauge dependence of the quantities
entering the vacuum stability analysis. While the critical value of the Higgs boson mass, marking
the transition between the stable/unstable phase of the SM, can be formally proven to be gauge
independent, the SM instability scale is actually gauge dependent. This is explicitly shown by a
direct calculation of the gauge dependent one-loop e↵ective potential in the SM.
The SM e↵ective potential is known in the Landau gauge at one [24] and two loops [43, 44] since
long. Recently, even the three-loop QCD and top-Yukawa corrections have been included [45].
On the other hand, calculations of the SM e↵ective potential beyond the Landau gauge are less
explored. Barring few exceptions, like for instance in Ref. [46] where a background-field-dependent
gauge fixing with a single gauge-fixing parameter was employed, the gauge dependence of the SM
e↵ective potential is usually not taken into consideration.

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.
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With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the
physical content of the e↵ective potential by means of the so-called Nielsen identities [30].
In particular, the issue of the gauge dependence of the e↵ective potential in the analysis of the
SM vacuum stability was already pointed out at the end of the 90’s by Loinaz and Willey [41],
which challenged the possibility of setting gauge-independent lower bounds on the Higgs boson
mass from vacuum stability constraints. More recently, the problematic identification between the
cuto↵ scale of the SM and the instability scale ⇤ was mentioned again in Ref. [42].

The aim of this paper is to clarify some issues related to the gauge dependence of the quantities
entering the vacuum stability analysis. While the critical value of the Higgs boson mass, marking
the transition between the stable/unstable phase of the SM, can be formally proven to be gauge
independent, the SM instability scale is actually gauge dependent. This is explicitly shown by a
direct calculation of the gauge dependent one-loop e↵ective potential in the SM.
The SM e↵ective potential is known in the Landau gauge at one [24] and two loops [43, 44] since
long. Recently, even the three-loop QCD and top-Yukawa corrections have been included [45].
On the other hand, calculations of the SM e↵ective potential beyond the Landau gauge are less
explored. Barring few exceptions, like for instance in Ref. [46] where a background-field-dependent

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.
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With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the
physical content of the e↵ective potential by means of the so-called Nielsen identities [30].
In particular, the issue of the gauge dependence of the e↵ective potential in the analysis of the
SM vacuum stability was already pointed out at the end of the 90’s by Loinaz and Willey [41],
which challenged the possibility of setting gauge-independent lower bounds on the Higgs boson
mass from vacuum stability constraints. More recently, the problematic identification between the
cuto↵ scale of the SM and the instability scale ⇤ was mentioned again in Ref. [42].

The aim of this paper is to clarify some issues related to the gauge dependence of the quantities
entering the vacuum stability analysis. While the critical value of the Higgs boson mass, marking
the transition between the stable/unstable phase of the SM, can be formally proven to be gauge

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.
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With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the
physical content of the e↵ective potential by means of the so-called Nielsen identities [30].
In particular, the issue of the gauge dependence of the e↵ective potential in the analysis of the
SM vacuum stability was already pointed out at the end of the 90’s by Loinaz and Willey [41],
which challenged the possibility of setting gauge-independent lower bounds on the Higgs boson

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.
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Origin of the gauge dependence
• EP is gauge dependent

FUNCTIONAL EVALUATION OF THE EFFECTIVE POTENTIAL 1699

choice of photon gauge which is translation-invari-
ant and does not require gauge-compensating
ghosts leads to an inverse photon propagator of the
form

id, '~,(k) = -k g„„+k~k„+d~(k) d, (-k), (4.12)

where d„(k) is an arbitrary vector which satisfies
k"d„(k)x0. Therefore it follows that

ln det(iZ '„,(Q; k)+iN»(P; k) )
=2 ln[k' —e p] -ln[k' --', Xp]+in (k' - e'p') —', e'A p —,. [k' —~eked'] ——', e'Ap d'—

d'=d"(k)d„(-k), (k d)'=[k„d "(k)][kid"(-k)] . (4.13)

As promised, there is a gauge dependence, i.e.,
a dependence on d"(k). The gauge-dependent con-
tribution is proportional to e ~~A/~, which is the
mass induced to the photon (e'P') times one of the
masses induced to the boson (~XP). To see this,
observe that if the e'&X/' term is ignored, the
logarithms in (4.13) become

d k'3 ln[k' —e~g~] + ln
k +i&

Now the gauge term may be dropped, since it is
independent of &]&.

For an explicit evaluation of V(P), we must
specify the k dependence of d "(k). An especially
simple choice is the class of Lorentz gauges
d" (k) = (I/vn )k". In this case (4.13) becomes
(apart from unimportant constants)

3 ln[k —e P ] -ln[k —~8XQ ]

+ ln[k' —-', Zk'y'+ u~6 e'x y4]

and, apart from a polynomial in P,
& d'k——,'ik, lndet[iZ „g'&;,k)+iN„, (f; k)]J 27'

fi [9e~—ae'X] Iny' . (4.14)41 Sm'

The effective potential thus is

V(P) = 4, X+, (~X'+9e' —ae'A) ig'n
(4.16)

This agrees with the Coleman-Weinberg calcula-
tion for o. =0, in the Landau gauge. ' [I have, of
course, dropped P and g' terms, as they are re-
normalized. However, for negative z and imagi-
nary d "(k), the P' term has a complex coefficient. ]
The gauge dependence of the effective potential

may also be seen in another way. Consider the
four-boson scattering amplitude, at zero momen-
tum. The one-loop, order-A. e' contribution is
summarized by Fig. 5. The integral representa-
tion for this quantity is proportional to

C. Discussion

The observation that V(p) is gauge-dependent
for a gauge theory raises a question concerning
the physical significance of any mathematical
properties of V(p). I have already remarked that
V(p) becomes complex for covariant Lorentz
gauges with n &0. It is also true that the whole
concept of an effective potential can be destroyed,
since one can also work with nontranslation-in-
variant gauges. In that circumstance I'(P) for con.
stant fields P is given by I'(P) = J d'x V(P; x), and
a local effective potential cannot be defined.
None of these peculiarities of V(g) are especial-

ly disturbing if one considers the symmetric solu-
tion to the theory at P =0. However, the search
for a minimum in V(P) away from P = 0 is not a
gauge-invariant procedure. Indeed, in the above
example, all one-loop effects can be made to dis-
appear by the choice

5X e'n= —~+9—.6 e X
(4.17)

At the present time I do not know whether the

FIG. 5. Gauge-dependent contribution to V(Q).

" d k k„k„h"'(k) o.e'X,"" dk'
„(2m)4 k4 16m' „, k' '

which is gauge-dependent. The reason for the
gauge dependence is clear: To obtain the physical,
gauge-independent scattering amplitude, one must
add wave-function renormalization graphs of the
form depicted in Fig. 6. At zero momentum they
survive; however, they are not single-particle
irreducible, hence by definition they are excluded
from V(g). (It is not difficult to show that the
single-particle irreducible e graphs contributing
to the scattering amplitude are separately gauge-
invariant at zero momentum. )

[Jackiw (1974)]
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Origin of the gauge dependence

• 4-boson scattering amplitude at zero external momentum
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choice of photon gauge which is translation-invari-
ant and does not require gauge-compensating
ghosts leads to an inverse photon propagator of the
form

id, '~,(k) = -k g„„+k~k„+d~(k) d, (-k), (4.12)

where d„(k) is an arbitrary vector which satisfies
k"d„(k)x0. Therefore it follows that

ln det(iZ '„,(Q; k)+iN»(P; k) )
=2 ln[k' —e p] -ln[k' --', Xp]+in (k' - e'p') —', e'A p —,. [k' —~eked'] ——', e'Ap d'—

d'=d"(k)d„(-k), (k d)'=[k„d "(k)][kid"(-k)] . (4.13)

As promised, there is a gauge dependence, i.e.,
a dependence on d"(k). The gauge-dependent con-
tribution is proportional to e ~~A/~, which is the
mass induced to the photon (e'P') times one of the
masses induced to the boson (~XP). To see this,
observe that if the e'&X/' term is ignored, the
logarithms in (4.13) become

d k'3 ln[k' —e~g~] + ln
k +i&

Now the gauge term may be dropped, since it is
independent of &]&.

For an explicit evaluation of V(P), we must
specify the k dependence of d "(k). An especially
simple choice is the class of Lorentz gauges
d" (k) = (I/vn )k". In this case (4.13) becomes
(apart from unimportant constants)

3 ln[k —e P ] -ln[k —~8XQ ]

+ ln[k' —-', Zk'y'+ u~6 e'x y4]

and, apart from a polynomial in P,
& d'k——,'ik, lndet[iZ „g'&;,k)+iN„, (f; k)]J 27'

fi [9e~—ae'X] Iny' . (4.14)41 Sm'

The effective potential thus is

V(P) = 4, X+, (~X'+9e' —ae'A) ig'n
(4.16)

This agrees with the Coleman-Weinberg calcula-
tion for o. =0, in the Landau gauge. ' [I have, of
course, dropped P and g' terms, as they are re-
normalized. However, for negative z and imagi-
nary d "(k), the P' term has a complex coefficient. ]
The gauge dependence of the effective potential

may also be seen in another way. Consider the
four-boson scattering amplitude, at zero momen-
tum. The one-loop, order-A. e' contribution is
summarized by Fig. 5. The integral representa-
tion for this quantity is proportional to

C. Discussion

The observation that V(p) is gauge-dependent
for a gauge theory raises a question concerning
the physical significance of any mathematical
properties of V(p). I have already remarked that
V(p) becomes complex for covariant Lorentz
gauges with n &0. It is also true that the whole
concept of an effective potential can be destroyed,
since one can also work with nontranslation-in-
variant gauges. In that circumstance I'(P) for con.
stant fields P is given by I'(P) = J d'x V(P; x), and
a local effective potential cannot be defined.
None of these peculiarities of V(g) are especial-

ly disturbing if one considers the symmetric solu-
tion to the theory at P =0. However, the search
for a minimum in V(P) away from P = 0 is not a
gauge-invariant procedure. Indeed, in the above
example, all one-loop effects can be made to dis-
appear by the choice

5X e'n= —~+9—.6 e X
(4.17)

At the present time I do not know whether the

FIG. 5. Gauge-dependent contribution to V(Q).

" d k k„k„h"'(k) o.e'X,"" dk'
„(2m)4 k4 16m' „, k' '

which is gauge-dependent. The reason for the
gauge dependence is clear: To obtain the physical,
gauge-independent scattering amplitude, one must
add wave-function renormalization graphs of the
form depicted in Fig. 6. At zero momentum they
survive; however, they are not single-particle
irreducible, hence by definition they are excluded
from V(g). (It is not difficult to show that the
single-particle irreducible e graphs contributing
to the scattering amplitude are separately gauge-
invariant at zero momentum. )
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gauge dependence of V(g} is a serious defect. If
one adopts the view that the loop expansion must
be converted to an ordinary perturbative expansion
in the coupling constant, then to order e4 there is
no gauge dependence in (4.15). ne'X is of order
ee, since X is assumed to be of order e4. In this
context a choice of gauge like (4.1V) is inadmissi-
ble since it clearly mixes up orders of perturba-
tion theory. (However, it is not always possible
to reexpand in the coupling constant. 4) Thus it is
not clear whether the physical consequence of the
Coleman-Weinberg' calculation is questioned.
Their physically interesting result is a formula
for the ratio of the spontaneously generated mass
of the Higgs particle to the vector-meson mass.
If spontaneous symmetry breaking by radiative
cox rections is a physical effect, it presumably is
gauge-independent, and the mass ratio can be
computed in any gauge. However, there is no
proof that radiative spontaneous symmetry break-
ing in gauge theories is a gauge-invariant phe-
nomenon. '4 Clearly, a calculation of V(Q) to order
ee will be illuminating. This requires a two-loop
calculation which is now in progress.

V. SUMMARY AND CONCLUSIONS

The main purpose of this paper is to develop
techniques for studying the effective potential be-
yond lowest order, so that bound-state phenom-
enon can be examined. The expansion in Sec. II
for V(g}will serve that purpose. Especially inter-
esting are zero-mass bound states in view of
their role in spontaneous mass generation. ' When
there is a zero-mass bound state, single-particle
irreducible Green's functions have a pole at zero
momentum. Yet hopefully, the effective potential
is well defined. I expect that the singularity in
momentum space becomes replaced by a singu-
larity in P space. This was observed by Coleman
and steinberg' in connection with infrared diver-
gences. Also, our computation of V($) for e Bose
fields, in the limit of large n, shows how many
loop effects sum up to produce a singularity in
V(y); see (3.25) and (3.2'I).
Although the development was confined to Bose

fields, Fermi fields can be treated analogously.
One difference, however, is that the functional
determinant which summarizes the one-loop graphs
enters with a different power: Rather than Det ~',
we have, for fermions, Det. The reason is that

FIG. 6. External wave-function renormalimation
graph which removes gauge dependence of Fig. 5.

the basic functional integral for Fermi fields is

~

~

d g d g exp —

/MAL

=DetM.

Also, ghost loops in gauge theories are handled
quite naturally by the present formalism. Of
course, one is not interested in generating Green's
functions with external ghost lines; this simply
means that the ghost field need not be shifted.
In the course of applying the formalism to vari-

ous examples, it was demonstrated that for gauge
theories V(P) is gauge-dependent. This raises the
following question about spontaneous symmetry
breaking by radiative corrections: Suppose V(P)
is found to possess a minimum at a nonzero value
of Q. Is this minimum present in all gauges, or
is it an artifact of the choice of

gaugers

Further-
more, are physical amplitudes, evaluated at non-
vanishing P, gauge-invariant2" The Coleman-
Weinberg' example of massless, scalar electro-
dynamics is inconclusive, since their calculation
is approximate: Only one-loop graphs are con-
sidered, and the answer is reliable only to order
e', while the gauge dependence appears in e'.
To be sure there is a gauge in which the one-
loop minimum disappears; see (4.17). However,
that gauge introduces inverse powers of the cou-
pling constant, which emphasize higher orders.
These have not, as yet, been computed.
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the field φ is constant. Removing an overall factor of space-time volume, we
define the effective potential Veff(φc) as,

Γ[φc] = −
∫

d4xVeff(φc) (16)

Using now the definition of Dirac δ-function,

δ(4)(p) =

∫
d4x

(2π)4
e−ipx (17)

and (15) in (13) we obtain,

φ̃c(p) = (2π)4φcδ
(4)(p). (18)

Replacing (18) in (14) we can write the effective action for constant field con-
figurations as,

Γ(φc) =
∞∑

n=0

1

n!
φn

c (2π)4δ(4)(0)Γ(n)(pi = 0) =
∞∑

n=0

1

n!
φn

c Γ(n)(pi = 0)

∫
d4x

(19)
and comparing it with (16) we obtain the final expression,

Veff(φc) = −
∞∑

n=0

1

n!
φn

c Γ(n)(pi = 0) (20)

which will be used for explicit calculations of the effective potential.
Let us finally mention that there is an alternative way of expanding the

effective action: it can also be expanded in powers of momentum, about the
point where all external momenta vanish. In configuration space that expan-
sion reads as:

Γ[φ] =

∫
d4x

[
−Veff(φ) +

1

2
(∂µφ(x))2Z(φ) + · · ·

]
(21)

1.2 The one-loop effective potential

We are now ready to compute the effective potential. In particular the zero-
loop contribution is simply the classical (tree-level) potential. The one-loop
contribution is readily computed using the previous techniques and can be
written in closed form for any field theory containing spinless particles, spin- 1

2
fermions and gauge bosons. Here we will follow closely the calculation of Ref.3.

3

Not one-particle-irreducible

• EP is gauge dependent
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tion for o. =0, in the Landau gauge. ' [I have, of
course, dropped P and g' terms, as they are re-
normalized. However, for negative z and imagi-
nary d "(k), the P' term has a complex coefficient. ]
The gauge dependence of the effective potential

may also be seen in another way. Consider the
four-boson scattering amplitude, at zero momen-
tum. The one-loop, order-A. e' contribution is
summarized by Fig. 5. The integral representa-
tion for this quantity is proportional to

C. Discussion

The observation that V(p) is gauge-dependent
for a gauge theory raises a question concerning
the physical significance of any mathematical
properties of V(p). I have already remarked that
V(p) becomes complex for covariant Lorentz
gauges with n &0. It is also true that the whole
concept of an effective potential can be destroyed,
since one can also work with nontranslation-in-
variant gauges. In that circumstance I'(P) for con.
stant fields P is given by I'(P) = J d'x V(P; x), and
a local effective potential cannot be defined.
None of these peculiarities of V(g) are especial-

ly disturbing if one considers the symmetric solu-
tion to the theory at P =0. However, the search
for a minimum in V(P) away from P = 0 is not a
gauge-invariant procedure. Indeed, in the above
example, all one-loop effects can be made to dis-
appear by the choice

5X e'n= —~+9—.6 e X
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At the present time I do not know whether the
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which is gauge-dependent. The reason for the
gauge dependence is clear: To obtain the physical,
gauge-independent scattering amplitude, one must
add wave-function renormalization graphs of the
form depicted in Fig. 6. At zero momentum they
survive; however, they are not single-particle
irreducible, hence by definition they are excluded
from V(g). (It is not difficult to show that the
single-particle irreducible e graphs contributing
to the scattering amplitude are separately gauge-
invariant at zero momentum. )

[Jackiw (1974)]
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SM gauge dependent EP (1)
• Classical SM Lagrangian

2 The SM effective potential at one loop

In order to set the notation, let us split the classical Lagrangian density of the electroweak sector
of the SM in a gauge, Higgs and fermion part

LC = LYM + LH + LF , (1)

with

LYM = −
1

4

(

∂µW
a
ν − ∂νW

a
µ + gϵabcW b

µW
c
ν

)2
−

1

4
(∂µBν − ∂νBµ)

2 , (2)

LH = (DµH)† (DµH)− V (H) , (3)

LF = QLiγµD
µQL + tRiγµD

µtR +
(

−ytQL(iσ
2)H∗tR + h.c.

)

+ . . . , (4)

where W a
µ (a = 1, 2, 3) and Bµ are the SU(2) and U(1) gauge fields, H is the SM Higgs doublet

with hypercharge Y = 1 and QT
L = (tL, bL) is the left-handed third generation quark doublet. Only

the top quark is retained among the fermions and the QCD indices are suppressed in the quark
sector. The covariant derivative is defined as

Dµ = ∂µ − ig
σa

2
W a

µ + ig′
Y

2
Bµ , (5)

where σa (a = 1, 2, 3) are the usual Pauli matrices, and the Higgs potential is

V (H) = −m2H†H + λ(H†H)2 . (6)

The effective potential can be conveniently computed by means of the background field method
of Jackiw [25]. After homogeneously shifting the scalar fields of the theory by a background
(spacetime independent) field φ, the one-loop effective potential is obtained by directly evaluating
the path integral expression of the effective action in the Gaussian approximation. After some
standard manipulations (see e.g. also [46,47]), the one-loop effective potential

V 1−loop
eff (φ) = V (0)

eff (φ) + V (1)
eff (φ) , (7)

can be recast in terms of the well-known formulas [25]

V (0)
eff (φ) = V (φ) , (8)

V (1)
eff (φ) = i

∑

n=SM fields

η

∫

d4k

(2π)4
log det iD̃−1

n {φ; k} . (9)

The matrix iD̃−1
n {φ; k} denotes the φ-dependent inverse propagators of the SM fields in mo-

mentum space, the determinant acts on all the internal indices and η = −1/2 (1) for bosons
(fermions/ghosts) is the power of the functional determinant due to the Gaussian path integral.

Gauge invariance allows us to perform the shift of the Higgs doublet in a specific direction of
the SU(2)⊗U(1) space:

H(x) →
1√
2

(

χ1(x) + iχ2(x)
φ+ h(x) + iχ3(x)

)

, (10)

where h denotes the Higgs field and χa (a = 1, 2, 3) the Goldstone boson fields. At tree level, the
effective potential reads

V (0)
eff (φ) = −

m2

2
φ2 +

λ

4
φ4 , (11)

while in order to compute the quantum correction, V (1)
eff , one needs to work out the inverse prop-

agators of the dynamical fields in the shifted SM Lagrangian. For exemplification, we consider
in the next section the computation of the one-loop SM effective potential in the Fermi gauge.
The calculation of the SM effective potential in a background-field-dependent Rξ gauge and in the
standard Rξ gauge is instead presented in Appendix B.

3

independent, the SM instability scale is actually gauge dependent. This is explicitly shown by a
direct calculation of the gauge dependent one-loop e↵ective potential in the SM.
The SM e↵ective potential is known in the Landau gauge at one [24] and two loops [43, 44] since
long. Recently, even the three-loop QCD and top-Yukawa corrections have been included [45].
On the other hand, calculations of the SM e↵ective potential beyond the Landau gauge are less
explored. Barring few exceptions, like for instance in Ref. [46] where a background-field-dependent
gauge fixing with a single gauge-fixing parameter was employed, the gauge dependence of the SM
e↵ective potential is usually not taken into consideration.

The paper is organized as follows: in Sect. 2 we provide a pedagogical derivation of the SM
one-loop e↵ective potential in the Fermi gauge (generalized Lorentz gauge) and consider its renor-
malization group (RG) improvement. In Sect. 3 we discuss the physical observables entering the
vacuum stability analysis. In particular, by using the Nielsen identity [30], we formally prove that
the lower bound on the Higgs boson mass derived from the electroweak-vacuum-stability condition
is gauge independent. On the other hand, the extrema of the e↵ective potential and, in particular,
the instability scale are in general gauge dependent. In Sect. 4 we numerically quantify at the
next-to-leading order (NLO) accuracy the gauge dependence of ⇤ in the Fermi gauge by varying
the gauge-fixing parameters in their perturbative domain and comment on the gauge-fixing scheme
dependence of ⇤. The interpretation and the physical implications of the gauge dependence of ⇤
are discussed in Sect. 5. The two-loop renormalization group equations (RGEs) of the SM pa-
rameters in the Fermi gauge are collected in Appendix A, while in Appendix B we report on the
calculation of the SM one-loop e↵ective potential in a background R⇠ gauge with the most general
set of gauge-fixing parameters. As a by-product we also obtain the SM one-loop e↵ective potential
in the standard R⇠ gauge, whose expression might be useful for broken-phase calculations.

2 The SM e↵ective potential at one loop

In order to set the notation, let us split the classical Lagrangian density of the electroweak sector
of the SM in a gauge, Higgs and fermion part
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where W a
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where �a (a = 1, 2, 3) are the usual Pauli matrices, and the Higgs potential is
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2)H⇤tR + h.c.
�
+ . . . , (12)

LYM = �1

4

�
@µW

a
⌫ � @⌫W

a
µ + . . .

�2 � 1

4
(@µB⌫ � @⌫Bµ)

2 (13)

LH = (DµH)† (DµH)� V (H) (14)

LF = . . . (15)

where W a
µ (a = 1, 2, 3) and Bµ are the SU(2) and U(1) gauge fields, H is the SM Higgs doublet

with hypercharge Y = 1 and QT
L = (tL, bL) is the left-handed third generation quark doublet. Only

the top quark is retained among the fermions and the QCD indices are suppressed in the quark
sector. The covariant derivative is defined as

Dµ = @µ � ig
�a

2
W a

µ + ig0
Y

2
Bµ (16)

where �a (a = 1, 2, 3) are the usual Pauli matrices, and the Higgs potential is

V (H) = �m2H†H + �(H†H)2 (17)

3

• Shift the Higgs doublet in a specific SU(2)xU(1) direction

• Gauge fixing: e.g. Fermi gauge (for unbroken phase problems) 

The e↵ective potential can be conveniently computed by means of the background field method
of Jackiw [25]. After homogeneously shifting the scalar fields of the theory by a background
(spacetime independent) field �, the one-loop e↵ective potential is obtained by directly evaluating
the path integral expression of the e↵ective action in the Gaussian approximation. After some
standard manipulations (see e.g. also [46, 47]), the one-loop e↵ective potential

V 1�loop
e↵ (�) = V

(0)
e↵ (�) + V

(1)
e↵ (�) , (18)

can be recast in terms of the well-known formulas [25]

V
(0)
e↵ (�) = V (�) , (19)

V
(1)
e↵ (�) = i

X

n=SM fields

⌘

Z
d4k

(2⇡)4
log det iD̃�1

n {�; k} . (20)

The matrix iD̃�1
n {�; k} denotes the �-dependent inverse propagators of the SM fields in mo-

mentum space, the determinant acts on all the internal indices and ⌘ = �1/2 (1) for bosons
(fermions/ghosts) is the power of the functional determinant due to the Gaussian path integral.

Gauge invariance allows us to perform the shift of the Higgs doublet in a specific direction of
the SU(2)⌦U(1) space:

H(x) ! 1p
2

✓
�1(x) + i�2(x)

�+ h(x) + i�3(x)

◆
, (21)

where h denotes the Higgs field and �a (a = 1, 2, 3) the Goldstone boson fields. At tree level, the
e↵ective potential reads

V
(0)
e↵ (�) = �m2

2
�2 +

�

4
�4 , (22)

while in order to compute the quantum correction, V (1)
e↵ , one needs to work out the inverse prop-

agators of the dynamical fields in the shifted SM Lagrangian. For exemplification, we consider
in the next section the computation of the one-loop SM e↵ective potential in the Fermi gauge.
The calculation of the SM e↵ective potential in a background-field-dependent R⇠ gauge and in the
standard R⇠ gauge is instead presented in Appendix B.

2.1 Fermi gauge

As long as we are interested in the high-energy behaviour of the the e↵ective potential, we can
directly work in the unbroken phase of the SM. Then, the most convenient way to fix the gauge is
by means of the Fermi gauge (generalized Lorentz gauge):

LFermi
g.f. = � 1

2⇠W

�
@µW a

µ

�2 � 1

2⇠B
(@µBµ)

2 . (23)

We are thus interested in the determination of the quadratic (�-dependent) part of the Lagrangian,
LC + LFermi

g.f. , after the shift in Eq. (21).2 A straightforward calculation yields

Lquad
YM = 1

2W
a
µ (⇤ gµ⌫ � @µ@⌫) �abW b

⌫ + 1
2Bµ (⇤ gµ⌫ � @µ@⌫)B⌫ , (24)

Lquad
H = 1

2h
��⇤� m̄2

h

�
h+ 1

2�
a
��⇤� m̄2

�

�
�ab�b + 1

2m̄
2
WW a

µW
aµ + 1

2m̄
2
BBµB

µ

+ m̄W m̄BW
3
µB

µ � m̄W@µ�
1W 2µ � m̄W@µ�

2W 1µ + m̄W@µ�
3W 3µ + m̄B@µ�

3Bµ , (25)

Lquad
F = t

�
i/@ � m̄t

�
t+ . . . , (26)

2One can easily see that the bilinear ghost terms are �-independent. Hence, in the Fermi gauge the ghost
contribution decouples from the one-loop e↵ective potential.
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SM gauge dependent EP (2)
• Work out the quadratic part of the SM Lagrangian after the shift (see BFM)

The e↵ective potential can be conveniently computed by means of the background field method
of Jackiw [25]. After homogeneously shifting the scalar fields of the theory by a background
(spacetime independent) field �, the one-loop e↵ective potential is obtained by directly evaluating
the path integral expression of the e↵ective action in the Gaussian approximation. After some
standard manipulations (see e.g. also [46, 47]), the one-loop e↵ective potential

V 1�loop
e↵ (�) = V

(0)
e↵ (�) + V

(1)
e↵ (�) , (18)

can be recast in terms of the well-known formulas [25]

V
(0)
e↵ (�) = V (�) , (19)

V
(1)
e↵ (�) = i

X

n=SM fields

⌘

Z
d4k

(2⇡)4
log det iD̃�1

n {�; k} . (20)

The matrix iD̃�1
n {�; k} denotes the �-dependent inverse propagators of the SM fields in mo-

mentum space, the determinant acts on all the internal indices and ⌘ = �1/2 (1) for bosons
(fermions/ghosts) is the power of the functional determinant due to the Gaussian path integral.

Gauge invariance allows us to perform the shift of the Higgs doublet in a specific direction of
the SU(2)⌦U(1) space:

H(x) ! 1p
2

✓
�1(x) + i�2(x)

�+ h(x) + i�3(x)

◆
, (21)

where h denotes the Higgs field and �a (a = 1, 2, 3) the Goldstone boson fields. At tree level, the
e↵ective potential reads

V
(0)
e↵ (�) = �m2

2
�2 +

�

4
�4 , (22)

while in order to compute the quantum correction, V (1)
e↵ , one needs to work out the inverse prop-

agators of the dynamical fields in the shifted SM Lagrangian. For exemplification, we consider
in the next section the computation of the one-loop SM e↵ective potential in the Fermi gauge.
The calculation of the SM e↵ective potential in a background-field-dependent R⇠ gauge and in the
standard R⇠ gauge is instead presented in Appendix B.

2.1 Fermi gauge

As long as we are interested in the high-energy behaviour of the the e↵ective potential, we can
directly work in the unbroken phase of the SM. Then, the most convenient way to fix the gauge is
by means of the Fermi gauge (generalized Lorentz gauge):

LFermi
g.f. = � 1

2⇠W

�
@µW a

µ

�2 � 1

2⇠B
(@µBµ)

2 . (23)

We are thus interested in the determination of the quadratic (�-dependent) part of the Lagrangian,
LC + LFermi

g.f. , after the shift in Eq. (21).2 A straightforward calculation yields

Lquad
YM = 1

2W
a
µ (⇤ gµ⌫ � @µ@⌫) �abW b

⌫ + 1
2Bµ (⇤ gµ⌫ � @µ@⌫)B⌫ , (24)

Lquad
H = 1

2h
��⇤� m̄2

h

�
h+ 1

2�
a
��⇤� m̄2

�

�
�ab�b + 1

2m̄
2
WW a

µW
aµ + 1

2m̄
2
BBµB

µ

+ m̄W m̄BW
3
µB

µ � m̄W@µ�
1W 2µ � m̄W@µ�

2W 1µ + m̄W@µ�
3W 3µ + m̄B@µ�

3Bµ , (25)

Lquad
F = t

�
i/@ � m̄t

�
t+ . . . , (26)

2One can easily see that the bilinear ghost terms are �-independent. Hence, in the Fermi gauge the ghost
contribution decouples from the one-loop e↵ective potential.

4

The e↵ective potential can be conveniently computed by means of the background field method
of Jackiw [25]. After homogeneously shifting the scalar fields of the theory by a background
(spacetime independent) field �, the one-loop e↵ective potential is obtained by directly evaluating
the path integral expression of the e↵ective action in the Gaussian approximation. After some
standard manipulations (see e.g. also [46, 47]), the one-loop e↵ective potential

V 1�loop
e↵ (�) = V

(0)
e↵ (�) + V

(1)
e↵ (�) , (18)

can be recast in terms of the well-known formulas [25]

V
(0)
e↵ (�) = V (�) , (19)

V
(1)
e↵ (�) = i

X

n=SM fields

⌘

Z
d4k

(2⇡)4
log det iD̃�1

n {�; k} . (20)

The matrix iD̃�1
n {�; k} denotes the �-dependent inverse propagators of the SM fields in mo-

mentum space, the determinant acts on all the internal indices and ⌘ = �1/2 (1) for bosons
(fermions/ghosts) is the power of the functional determinant due to the Gaussian path integral.

Gauge invariance allows us to perform the shift of the Higgs doublet in a specific direction of
the SU(2)⌦U(1) space:

H(x) ! 1p
2

✓
�1(x) + i�2(x)

�+ h(x) + i�3(x)

◆
, (21)

where h denotes the Higgs field and �a (a = 1, 2, 3) the Goldstone boson fields. At tree level, the
e↵ective potential reads

V
(0)
e↵ (�) = �m2

2
�2 +

�

4
�4 , (22)

while in order to compute the quantum correction, V (1)
e↵ , one needs to work out the inverse prop-

agators of the dynamical fields in the shifted SM Lagrangian. For exemplification, we consider
in the next section the computation of the one-loop SM e↵ective potential in the Fermi gauge.
The calculation of the SM e↵ective potential in a background-field-dependent R⇠ gauge and in the
standard R⇠ gauge is instead presented in Appendix B.

2.1 Fermi gauge

As long as we are interested in the high-energy behaviour of the the e↵ective potential, we can
directly work in the unbroken phase of the SM. Then, the most convenient way to fix the gauge is
by means of the Fermi gauge (generalized Lorentz gauge):

LFermi
g.f. = � 1

2⇠W

�
@µW a

µ

�2 � 1

2⇠B
(@µBµ)

2 . (23)

We are thus interested in the determination of the quadratic (�-dependent) part of the Lagrangian,
LC + LFermi

g.f. , after the shift in Eq. (21).2 A straightforward calculation yields

Lquad
YM = 1

2W
a
µ (⇤ gµ⌫ � @µ@⌫) �abW b

⌫ + 1
2Bµ (⇤ gµ⌫ � @µ@⌫)B⌫

Lquad
H = 1

2h
��⇤� m̄2

h

�
h+ 1

2�
a
��⇤� m̄2

�

�
�ab�b + 1

2m̄
2
WW a

µW
aµ + 1

2m̄
2
BBµB

µ + m̄W m̄BW
3
µB

µ

� m̄W@µ�
1W 2µ � m̄W@µ�

2W 1µ + m̄W@µ�
3W 3µ + m̄B@µ�

3Bµ

Lquad
F = t

�
i/@ � m̄t

�
t+ . . .

2One can easily see that the bilinear ghost terms are �-independent. Hence, in the Fermi gauge the ghost
contribution decouples from the one-loop e↵ective potential.

4

- Field-dependent masses

where ⇤ ⌘ @µ@
µ and we defined the �-dependent masses

m̄2
h = �m2 + 3��2 (24)

m̄2
� = �m2 + ��2 (25)

m̄W = 1
2g� (26)

m̄B = 1
2g

0� (27)

m̄t =
ytp
2
� (28)

while LFermi
g.f. is already quadratic in the gauge boson fields. The only technical complication in the

Fermi gauge is the presence of a Goldstone–gauge boson mixing already at tree level (cf. Eq. (??)).
The latter can be treated by defining an extended field vector

XT =
�
V T
µ ,�T

�
, (29)

where
V T
µ =

�
W 1

µ ,W
2
µ ,W

3
µ , Bµ

�
�T =

�
�1,�2,�3

�
(30)

Then the quadratic part of the Goldstone–gauge sector can be rewritten as

1

2
XT

�
iD�1

X

�
X =

1

2

�
V T
µ ,�T

�✓ i
�D�1

V

�µ
⌫

m̄T
mix @

µ

�m̄mix @⌫ iD�1
�

◆✓
V ⌫

�

◆
, (31)

with

m̄mix =

0

@
0 �m̄W 0 0

�m̄W 0 0 0
0 0 m̄W m̄B

1

A . (32)

After Fourier transformation, @µ ! ikµ, the mixed inverse propagator matrix becomes

iD̃�1
X =

✓
i(D̃�1

V )µ⌫ ikµm̄T
mix

�ik⌫m̄mix iD̃�1
�

◆
, (33)

where (D̃�1
V )µ⌫ is conveniently split into a transversal and a longitudinal part

(D̃�1
V )µ⌫ = iD̃�1

T (⇧T )
µ
⌫ + iD̃�1

L (⇧L)
µ
⌫ , (34)

with

(⇧T )
µ
⌫ = gµ⌫ � kµk⌫

k2
, (⇧L)

µ
⌫ =

kµk⌫
k2

, (35)

and

iD̃�1
T =

0

BB@

�k2 + m̄2
W 0 0 0

0 �k2 + m̄2
W 0 0

0 0 �k2 + m̄2
W m̄W m̄B

0 0 m̄W m̄B �k2 + m̄2
B

1

CCA , (36)

iD̃�1
L =

0

BB@

�⇠�1
W k2 + m̄2

W 0 0 0
0 �⇠�1

W k2 + m̄2
W 0 0

0 0 �⇠�1
W k2 + m̄2

W m̄W m̄B

0 0 m̄W m̄B �⇠�1
B k2 + m̄2

B

1

CCA . (37)

The Goldstone boson inverse propagator reads

iD̃�1
� =

0

@
k2 � m̄2

� 0 0
0 k2 � m̄2

� 0
0 0 k2 � m̄2

�

1

A , (38)
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SM gauge dependent EP (2)

The e↵ective potential can be conveniently computed by means of the background field method
of Jackiw [25]. After homogeneously shifting the scalar fields of the theory by a background
(spacetime independent) field �, the one-loop e↵ective potential is obtained by directly evaluating
the path integral expression of the e↵ective action in the Gaussian approximation. After some
standard manipulations (see e.g. also [46, 47]), the one-loop e↵ective potential

V 1�loop
e↵ (�) = V

(0)
e↵ (�) + V

(1)
e↵ (�) , (18)

can be recast in terms of the well-known formulas [25]

V
(0)
e↵ (�) = V (�) , (19)

V
(1)
e↵ (�) = i

X

n=SM fields

⌘

Z
d4k

(2⇡)4
log det iD̃�1

n {�; k} . (20)

The matrix iD̃�1
n {�; k} denotes the �-dependent inverse propagators of the SM fields in mo-

mentum space, the determinant acts on all the internal indices and ⌘ = �1/2 (1) for bosons
(fermions/ghosts) is the power of the functional determinant due to the Gaussian path integral.

Gauge invariance allows us to perform the shift of the Higgs doublet in a specific direction of
the SU(2)⌦U(1) space:

H(x) ! 1p
2

✓
�1(x) + i�2(x)

�+ h(x) + i�3(x)

◆
, (21)

where h denotes the Higgs field and �a (a = 1, 2, 3) the Goldstone boson fields. At tree level, the
e↵ective potential reads

V
(0)
e↵ (�) = �m2

2
�2 +

�

4
�4 , (22)

while in order to compute the quantum correction, V (1)
e↵ , one needs to work out the inverse prop-

agators of the dynamical fields in the shifted SM Lagrangian. For exemplification, we consider
in the next section the computation of the one-loop SM e↵ective potential in the Fermi gauge.
The calculation of the SM e↵ective potential in a background-field-dependent R⇠ gauge and in the
standard R⇠ gauge is instead presented in Appendix B.

2.1 Fermi gauge

As long as we are interested in the high-energy behaviour of the the e↵ective potential, we can
directly work in the unbroken phase of the SM. Then, the most convenient way to fix the gauge is
by means of the Fermi gauge (generalized Lorentz gauge):

LFermi
g.f. = � 1

2⇠W

�
@µW a

µ

�2 � 1

2⇠B
(@µBµ)

2 . (23)

We are thus interested in the determination of the quadratic (�-dependent) part of the Lagrangian,
LC + LFermi

g.f. , after the shift in Eq. (21).2 A straightforward calculation yields

Lquad
YM = 1

2W
a
µ (⇤ gµ⌫ � @µ@⌫) �abW b

⌫ + 1
2Bµ (⇤ gµ⌫ � @µ@⌫)B⌫ , (24)

Lquad
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��⇤� m̄2
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h+ 1
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��⇤� m̄2
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�
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2m̄
2
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2
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+ m̄W m̄BW
3
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µ � m̄W@µ�
1W 2µ � m̄W@µ�

2W 1µ + m̄W@µ�
3W 3µ + m̄B@µ�

3Bµ , (25)

Lquad
F = t

�
i/@ � m̄t

�
t+ . . . , (26)

2One can easily see that the bilinear ghost terms are �-independent. Hence, in the Fermi gauge the ghost
contribution decouples from the one-loop e↵ective potential.

4

- Ghosts decouple at one loop

The e↵ective potential can be conveniently computed by means of the background field method
of Jackiw [25]. After homogeneously shifting the scalar fields of the theory by a background
(spacetime independent) field �, the one-loop e↵ective potential is obtained by directly evaluating
the path integral expression of the e↵ective action in the Gaussian approximation. After some
standard manipulations (see e.g. also [46, 47]), the one-loop e↵ective potential

V 1�loop
e↵ (�) = V

(0)
e↵ (�) + V

(1)
e↵ (�) , (18)

can be recast in terms of the well-known formulas [25]
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The matrix iD̃�1
n {�; k} denotes the �-dependent inverse propagators of the SM fields in mo-

mentum space, the determinant acts on all the internal indices and ⌘ = �1/2 (1) for bosons
(fermions/ghosts) is the power of the functional determinant due to the Gaussian path integral.

Gauge invariance allows us to perform the shift of the Higgs doublet in a specific direction of
the SU(2)⌦U(1) space:

H(x) ! 1p
2
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, (21)

where h denotes the Higgs field and �a (a = 1, 2, 3) the Goldstone boson fields. At tree level, the
e↵ective potential reads

V
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e↵ (�) = �m2

2
�2 +

�

4
�4 , (22)

while in order to compute the quantum correction, V (1)
e↵ , one needs to work out the inverse prop-

agators of the dynamical fields in the shifted SM Lagrangian. For exemplification, we consider
in the next section the computation of the one-loop SM e↵ective potential in the Fermi gauge.
The calculation of the SM e↵ective potential in a background-field-dependent R⇠ gauge and in the
standard R⇠ gauge is instead presented in Appendix B.

2.1 Fermi gauge

As long as we are interested in the high-energy behaviour of the the e↵ective potential, we can
directly work in the unbroken phase of the SM. Then, the most convenient way to fix the gauge is
by means of the Fermi gauge (generalized Lorentz gauge):

LFermi
g.f. = � 1

2⇠W

�
@µW a

µ

�2 � 1

2⇠B
(@µBµ)

2 . (23)

We are thus interested in the determination of the quadratic (�-dependent) part of the Lagrangian,
LC + LFermi

g.f. , after the shift in Eq. (21).2 A straightforward calculation yields

Lquad
YM = 1

2W
a
µ (⇤ gµ⌫ � @µ@⌫) �abW b

⌫ + 1
2Bµ (⇤ gµ⌫ � @µ@⌫)B⌫
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2One can easily see that the bilinear ghost terms are �-independent. Hence, in the Fermi gauge the ghost
contribution decouples from the one-loop e↵ective potential.

4

- Field-dependent masses

where ⇤ ⌘ @µ@
µ and we defined the �-dependent masses

m̄2
h = �m2 + 3��2 (24)
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m̄W = 1
2g� (26)

m̄B = 1
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0� (27)

m̄t =
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while LFermi
g.f. is already quadratic in the gauge boson fields. The only technical complication in the

Fermi gauge is the presence of a Goldstone–gauge boson mixing already at tree level (cf. Eq. (??)).
The latter can be treated by defining an extended field vector
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, (29)

where
V T
µ =
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W 1
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Then the quadratic part of the Goldstone–gauge sector can be rewritten as
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with

m̄mix =
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After Fourier transformation, @µ ! ikµ, the mixed inverse propagator matrix becomes
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where (D̃�1
V )µ⌫ is conveniently split into a transversal and a longitudinal part
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and
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SM gauge dependent EP (2)

The e↵ective potential can be conveniently computed by means of the background field method
of Jackiw [25]. After homogeneously shifting the scalar fields of the theory by a background
(spacetime independent) field �, the one-loop e↵ective potential is obtained by directly evaluating
the path integral expression of the e↵ective action in the Gaussian approximation. After some
standard manipulations (see e.g. also [46, 47]), the one-loop e↵ective potential

V 1�loop
e↵ (�) = V

(0)
e↵ (�) + V

(1)
e↵ (�) , (18)

can be recast in terms of the well-known formulas [25]

V
(0)
e↵ (�) = V (�) , (19)

V
(1)
e↵ (�) = i

X
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Z
d4k

(2⇡)4
log det iD̃�1

n {�; k} . (20)

The matrix iD̃�1
n {�; k} denotes the �-dependent inverse propagators of the SM fields in mo-

mentum space, the determinant acts on all the internal indices and ⌘ = �1/2 (1) for bosons
(fermions/ghosts) is the power of the functional determinant due to the Gaussian path integral.

Gauge invariance allows us to perform the shift of the Higgs doublet in a specific direction of
the SU(2)⌦U(1) space:

H(x) ! 1p
2

✓
�1(x) + i�2(x)

�+ h(x) + i�3(x)

◆
, (21)

where h denotes the Higgs field and �a (a = 1, 2, 3) the Goldstone boson fields. At tree level, the
e↵ective potential reads

V
(0)
e↵ (�) = �m2

2
�2 +

�

4
�4 , (22)

while in order to compute the quantum correction, V (1)
e↵ , one needs to work out the inverse prop-

agators of the dynamical fields in the shifted SM Lagrangian. For exemplification, we consider
in the next section the computation of the one-loop SM e↵ective potential in the Fermi gauge.
The calculation of the SM e↵ective potential in a background-field-dependent R⇠ gauge and in the
standard R⇠ gauge is instead presented in Appendix B.

2.1 Fermi gauge

As long as we are interested in the high-energy behaviour of the the e↵ective potential, we can
directly work in the unbroken phase of the SM. Then, the most convenient way to fix the gauge is
by means of the Fermi gauge (generalized Lorentz gauge):

LFermi
g.f. = � 1
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�
@µW a
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2⇠B
(@µBµ)

2 . (23)

We are thus interested in the determination of the quadratic (�-dependent) part of the Lagrangian,
LC + LFermi

g.f. , after the shift in Eq. (21).2 A straightforward calculation yields
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2W
a
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Lquad
F = t

�
i/@ � m̄t

�
t+ . . . , (26)

2One can easily see that the bilinear ghost terms are �-independent. Hence, in the Fermi gauge the ghost
contribution decouples from the one-loop e↵ective potential.
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- Field-dependent masses

where ⇤ ⌘ @µ@
µ and we defined the �-dependent masses

m̄2
h = �m2 + 3��2 (24)

m̄2
� = �m2 + ��2 (25)

m̄W = 1
2g� (26)

m̄B = 1
2g

0� (27)

m̄t =
ytp
2
� (28)

while LFermi
g.f. is already quadratic in the gauge boson fields. The only technical complication in the

Fermi gauge is the presence of a Goldstone–gauge boson mixing already at tree level (cf. Eq. (??)).
The latter can be treated by defining an extended field vector

XT =
�
V T
µ ,�T

�
, (29)

where
V T
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W 1

µ ,W
2
µ ,W

3
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Then the quadratic part of the Goldstone–gauge sector can be rewritten as
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After Fourier transformation, @µ ! ikµ, the mixed inverse propagator matrix becomes
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V )µ⌫ is conveniently split into a transversal and a longitudinal part
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The Goldstone boson inverse propagator reads
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SM gauge dependent EP (3)
• After some standard manipulations … 

that in the Fermi gauge the field � gets only multiplicatively renormalized by the wavefunction of
the Higgs field. This feature is due to the invariance of the complete SM Lagrangian (including
the gauge-fixing term in Eq. (23)) under the transformation h ! h+ a and � ! � � a, as shown
in [52,53]. As we will see in Appendix B, this property does not hold anymore in the background
R⇠ gauge.

Hence, after the renormalization procedure, the one-loop contribution to the e↵ective potential
in the MS scheme reads

V
(1)
e↵ =

1

4(4⇡)2


�12m̄4

t

✓
log

m̄2
t

µ2
� 3

2

◆
+ 6m̄4

W
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log
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W
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� 5

6

◆
+ 3m̄4
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log
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Z
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6

◆
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h
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log
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h
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+2m̄4
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log
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µ2
� 3

2
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+ 2m̄4
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log
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log

m̄2
B+

µ2
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2
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+ m̄4
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log

m̄2
B�

µ2
� 3

2

◆�

where the definitions of the �-dependent mass terms are given in Eqs. (24)–(28) and Eqs. (45)–(47).
In particular, for ⇠W = ⇠B = 0 one has m̄A+ = m̄B+ = m̄� and m̄A� = m̄B� = 0, so that Eq. (58)
reproduces the standard one-loop result in the Landau gauge [24].

Let us stress that the gauge dependence of V (1)
e↵ cannot be removed by a suitable choice of

the renormalization scheme, as it can be verified by adding finite terms in Eqs. (55)–(57). Notice,
however, that on the tree-level minimum, m2 = ��2 (hence m̄� = 0 and m̄A± = m̄B± = 0), the

gauge dependence drops from V
(1)
e↵ |Fermi. We will discuss this aspect in more detail in Sect. 3.

2.2 Renormalization group improvement

In applications where the behavior of Ve↵(�) at large � is needed, like for the vacuum stability
analysis, one has to deal with potentially large logarithms of the type log(�/µ) which may spoil
the range of application of perturbation theory. The standard way to resum such logarithms is by
means of the RGEs. Since Ve↵ is independent of the renormalization scale µ for fixed values of the
bare parameters, one obtains the RGE

✓
µ

@

@µ
+ �i

@

@�i
� ��

@

@�

◆
Ve↵ = 0 , (58)

where the beta functions

�i = µ
d�i

dµ
, (59)

correspond to each of the SM coupling �i (including the gauge-fixing parameters) and the anoma-
lous dimension of the background field is defined by

� = �µ

�

d�

dµ
. (60)

The formal solution of the RGE in Eq. (59) can be obtained by applying the method of the
characteristics [16]:

Ve↵(µ,�i,�) = Ve↵(µ(t),�i(t),�(t)) , (61)

where

µ(t) = µet , (62)

�(t) = e�(t)� , (63)

with

�(t) = �
Z t

0
�(�(t0)) dt0 , (64)

and �i(t) are the SM running couplings, determined by the equation

d�i(t)

dt
= �i(�i(t)) , (65)
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The formal solution of the RGE in Eq. (59) can be obtained by applying the method of the
characteristics [16]:

Ve↵(µ,�i,�) = Ve↵(µ(t),�i(t),�(t)) , (61)

where

µ(t) = µet , (62)

�(t) = e�(t)� , (63)

with

�(t) = �
Z t

0
�(�(t0)) dt0 , (64)

and �i(t) are the SM running couplings, determined by the equation

d�i(t)

dt
= �i(�i(t)) , (65)
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while those of the Higgs and top quark fields are

iD̃�1
h = k2 � m̄2

h , (39)

iD̃�1
t = /k � m̄t . (40)

The next step (see Eq. (20)) is the evaluation of log det iD̃�1
n , for n = X,h, t. Only the former and

the latter present some non-trivial steps. Let us start by expressing the determinant of the block
matrix in Eq. (33) as

det iD̃�1
X = det iD̃�1
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⌫
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, (41)

where in the last step we used Eq. (34), and perform a Lorentz transformation in d spacetime
dimensions,3 kµ ! (k0, 0, 0, 0, . . .), such that (⇧L)

µ
⌫ ! (1, 0, 0, 0, . . .) and (⇧T )

µ
⌫ ! (0, 1, 1, 1, . . .).

Using the Loretz invariance of the determinant, we obtain

log det iD̃�1
X = (d� 1) log det D̃�1
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The explicit evaluation of the two summands in the right-hand side of Eq. (42) yields

log det iD̃�1
T = 2 log
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where the ellipses stand for �-independent terms and we defined the �-dependent masses

m̄2
Z = m̄2

W + m̄2
B (45)

m̄2
A± =

1

2
m̄�

⇣
m̄� ±

q
m̄2

� � 4⇠W m̄2
W

⌘
(46)

m̄2
B± =

1

2
m̄�

⇣
m̄� ±

q
m̄2

� � 4(⇠W m̄2
W + ⇠Bm̄2

B)
⌘

(47)

For the evaluation of the fermionic determinant of Eq. (40) we employ a naive treatment of �5
in dimensional regularization (i.e. {�5, �µ} = 0 in d dimensions) and make the standard choice
Tr1Dirac = 4 in d dimensions.4 Explicitly, one has

log det (/k � m̄t) = Tr log (/k � m̄t) = Tr log �5 (/k � m̄t) �
5 = Tr log (�/k � m̄t)

=
1

2
[Tr log (/k � m̄t) + Tr log (�/k � m̄t)] =

1

2
Tr log

��k2 + m̄2
t

�

=
1

2
4⇥ 3 log

��k2 + m̄2
t

�
, (48)

where the extra factors in the last step are due to the trace in the Dirac and color space.

3We already anticipate the fact that we are going to regulate the divergent integrals in dimensional regularization.
4A di↵erent choice, e.g. Tr1Dirac = 2d/2, would just lead to a di↵erent renormalization scheme [48].
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For the evaluation of the fermionic determinant of Eq. (40) we employ a naive treatment of �5
in dimensional regularization (i.e. {�5, �µ} = 0 in d dimensions) and make the standard choice
Tr1Dirac = 4 in d dimensions.4 Explicitly, one has
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where the extra factors in the last step are due to the trace in the Dirac and color space.

3We already anticipate the fact that we are going to regulate the divergent integrals in dimensional regularization.
4A di↵erent choice, e.g. Tr1Dirac = 2d/2, would just lead to a di↵erent renormalization scheme [48].
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the Higgs field. This feature is due to the invariance of the complete SM Lagrangian (including
the gauge-fixing term in Eq. (23)) under the transformation h ! h+ a and � ! � � a, as shown
in [52,53]. As we will see in Appendix B, this property does not hold anymore in the background
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where the definitions of the �-dependent mass terms are given in Eqs. (24)–(28) and Eqs. (45)–(47).
In particular, for ⇠W = ⇠B = 0 one has m̄A+ = m̄B+ = m̄� and m̄A� = m̄B� = 0, so that Eq. (??)
reproduces the standard one-loop result in the Landau gauge [24].

Let us stress that the gauge dependence of V (1)
e↵ cannot be removed by a suitable choice of

the renormalization scheme, as it can be verified by adding finite terms in Eqs. (55)–(57). Notice,
however, that on the tree-level minimum, m2 = ��2 (hence m̄� = 0 and m̄A± = m̄B± = 0), the

gauge dependence drops from V
(1)
e↵ |Fermi. We will discuss this aspect in more detail in Sect. 3.

2.2 Renormalization group improvement

In applications where the behavior of Ve↵(�) at large � is needed, like for the vacuum stability
analysis, one has to deal with potentially large logarithms of the type log(�/µ) which may spoil
the range of application of perturbation theory. The standard way to resum such logarithms is by
means of the RGEs. Since Ve↵ is independent of the renormalization scale µ for fixed values of the
bare parameters, one obtains the RGE
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correspond to each of the SM coupling �i (including the gauge-fixing parameters) and the anoma-
lous dimension of the background field is defined by

� = �µ
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. (60)

The formal solution of the RGE in Eq. (58) can be obtained by applying the method of the
characteristics [16]:

Ve↵(µ,�i,�) = Ve↵(µ(t),�i(t),�(t)) , (61)

where

µ(t) = µet , (62)

�(t) = e�(t)� , (63)

with

�(t) = �
Z t

0
�(�(t0)) dt0 , (64)

and �i(t) are the SM running couplings, determined by the equation
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dt
= �i(�i(t)) , (65)
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in [52,53]. As we will see in Appendix B, this property does not hold anymore in the background
R⇠ gauge.

Hence, after the renormalization procedure, the one-loop contribution to the e↵ective potential
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where the definitions of the �-dependent mass terms are given in Eqs. (24)–(28) and Eqs. (45)–(47).
In particular, for ⇠W = ⇠B = 0 one has m̄A+ = m̄B+ = m̄� and m̄A� = m̄B� = 0, so that Eq. (??)
reproduces the standard one-loop result in the Landau gauge [24].

Let us stress that the gauge dependence of V (1)
e↵ cannot be removed by a suitable choice of

the renormalization scheme, as it can be verified by adding finite terms in Eqs. (55)–(57). Notice,
however, that on the tree-level minimum, m2 = ��2 (hence m̄� = 0 and m̄A± = m̄B± = 0), the

gauge dependence drops from V
(1)
e↵ |Fermi. We will discuss this aspect in more detail in Sect. 3.

2.2 Renormalization group improvement

In applications where the behavior of Ve↵(�) at large � is needed, like for the vacuum stability
analysis, one has to deal with potentially large logarithms of the type log(�/µ) which may spoil
the range of application of perturbation theory. The standard way to resum such logarithms is by
means of the RGEs. Since Ve↵ is independent of the renormalization scale µ for fixed values of the
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that in the Fermi gauge the field � gets only multiplicatively renormalized by the wavefunction of
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In applications where the behavior of Ve↵(�) at large � is needed, like for the vacuum stability
analysis, one has to deal with potentially large logarithms of the type log(�/µ) which may spoil
the range of application of perturbation theory. The standard way to resum such logarithms is by
means of the RGEs. Since Ve↵ is independent of the renormalization scale µ for fixed values of the
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Vacuum stability bound
• Take all the parameters of the SM fixed but the Higgs mass: 

Critical Higgs mass

3 Physical observables in the vacuum stability analysis

The present Section is devoted to a general discussion on the gauge dependence/independence
of the quantities entering the vacuum stability analysis. To fix the ideas, let us assume that all
the parameters of the SM are exactly determined, but the Higgs boson mass. After choosing the
renormalization scale t, the RG improved effective potential, Veff(φ,Mh; ξ), is a function of φ, the
Higgs pole mass Mh, and the gauge fixing parameters, which are collectively denoted by ξ. One can
think of Mh as an order parameter, whose variation modifies the shape of the effective potential,
as for instance sketched in Fig. 1.

Φew Φ
"#

Veff

Φ

Mh
c

Mh$Mh
c

Mh%Mh
c

Figure 1: Schematic representation of the SM effective potential for different values of the Higgs
boson mass. For Mh < M c

h, the electroweak vacuum is unstable.

The absolute stability bound on the Higgs boson mass can be obtained by defining a “critical”
mass, M c

h, for which the value of the effective potential at the electroweak minimum, φew, and at
a second minimum, φ̃ > φew, are the same. Analytically, this translates into the three conditions:

Veff(φew,M
c
h; ξ)− Veff(φ̃,M

c
h; ξ) = 0 , (62)

∂Veff

∂φ

∣

∣

∣

∣

φew,Mc
h

=
∂Veff

∂φ

∣

∣

∣

∣

φ̃,Mc
h

= 0 . (63)

In the φ ≫ φew limit, the RG improved SM effective potential is well approximated by

Veff(φ) =

(

Ωeff(φ)

φ4
−

1

2

m2
eff(φ)

φ2
+

1

4
λeff(φ)

)

φ4 ≈
1

4
λeff(φ)φ

4 . (64)

Indeed, at the leading order in the m2/φ2 expansion, where m2 ∼ φ2
ew is the electroweak parameter

of the Higgs potential, the effective couplings Ωeff and m2
eff turn out to be proportional to m4 and

m2 respectively.6 Hence, the absolute stability condition in Eqs. (62)–(63) can be equivalently
rewritten in the following way [5]:

λeff(φ̃,M
c
h; ξ) = 0 , (65)

∂λeff

∂φ

∣

∣

∣

∣

φ̃,Mc
h

= 0 , (66)

6 Moreover, since the beta function of m is proportional to m itself, the value of m does not change much even
after a scale running of many orders of magnitude.
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and subject to the boundary condition �i(0) = �i.
The usefulness of the RG is that t can be chosen in such a way that the convergence of

perturbation theory is improved. For instance, a standard choice in vacuum stability analyses is
µ(t) = � (see e.g. Ref. [6]). Without sticking, for the time being, to any specific choice of scale,
the RG improved e↵ective potential can be rewritten as

Ve↵(�, t) = ⌦e↵(�, t)� m2
e↵(�, t)

2
�2 +

�e↵(�, t)

4
�4 , (68)

where the functional form of the e↵ective couplings in Eq. (68) depends on the chosen gauge. In
particular, in the � � m limit the e↵ective potential takes the universal form

Ve↵(�, t) ⇡ �e↵(�, t)

4
�4 , (69)

with

�e↵(�, t) ⇡ e4�(t)

"
�(t) +

1

(4⇡)2

X

p

Np
2
p(t)

 
log

p(t)e2�(t)�2

µ(t)2
� Cp

!#
, (70)

since � is the only massive parameter. The coe�cients Np, Cp and p appearing in Eq. (70) are
explicitly listed in Table 1 for the Fermi gauge and in Table 2 of Appendix B for the background
R⇠ gauge.

p t W Z h A± B±

Np �12 6 3 1 2 1
Cp

3
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5
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3
2
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⇣
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p
�2 � �⇠W g2

⌘
1
2

⇣
�±p�2 � �(⇠W g2 + ⇠Bg02)

⌘

Table 1: The p-coe�cients entering the expression of �e↵ in Eq. (70) for the Fermi gauge.

Let us finally note that the gauge dependence of the RG improved e↵ective potential is twofold.
The gauge fixing parameters appear both in the couplings p (cf. Table 1), and in the anomalous
dimension of � (cf. Eq. (110) in Appendix A) and hence in its integral �.

3 Physical observables in the vacuum stability analysis

The present Section is devoted to a general discussion on the gauge dependence/independence
of the quantities entering the vacuum stability analysis. To fix the ideas, let us assume that all
the parameters of the SM are exactly determined, but the Higgs boson mass. After choosing the
renormalization scale t, the RG improved e↵ective potential, Ve↵(�,Mh; ⇠), is a function of �, the
Higgs pole mass Mh, and the gauge fixing parameters, which are collectively denoted by ⇠. One can
think of Mh as an order parameter, whose variation modifies the shape of the e↵ective potential,
as for instance sketched in Fig. 1.

The absolute stability bound on the Higgs boson mass can be obtained by defining a “critical”
mass, M c

h, for which the value of the e↵ective potential at the electroweak minimum, �ew, and at
a second minimum, �̃ > �ew, are the same. Analytically, this translates into the three conditions:

Ve↵(�ew,M
c
h; ⇠)� Ve↵(�̃,M

c
h; ⇠) = 0 (71)
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= 0 (72)

In the � � �ew limit, the RG improved SM e↵ective potential is well approximated by

Ve↵(�) =
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4 (73)
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and subject to the boundary condition �i(0) = �i.
The usefulness of the RG is that t can be chosen in such a way that the convergence of

perturbation theory is improved. For instance, a standard choice in vacuum stability analyses is
µ(t) = � (see e.g. Ref. [6]). Without sticking, for the time being, to any specific choice of scale,
the RG improved e↵ective potential can be rewritten as

Ve↵(�, t) = ⌦e↵(�, t)� m2
e↵(�, t)

2
�2 +

�e↵(�, t)

4
�4 , (68)

where the functional form of the e↵ective couplings in Eq. (68) depends on the chosen gauge. In
particular, in the � � m limit the e↵ective potential takes the universal form

Ve↵(�, t) ⇡ �e↵(�, t)

4
�4 , (69)

with
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since � is the only massive parameter. The coe�cients Np, Cp and p appearing in Eq. (70) are
explicitly listed in Table 1 for the Fermi gauge and in Table 2 of Appendix B for the background
R⇠ gauge.
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Table 1: The p-coe�cients entering the expression of �e↵ in Eq. (70) for the Fermi gauge.

Let us finally note that the gauge dependence of the RG improved e↵ective potential is twofold.
The gauge fixing parameters appear both in the couplings p (cf. Table 1), and in the anomalous
dimension of � (cf. Eq. (109) in Appendix A) and hence in its integral �.

3 Physical observables in the vacuum stability analysis

The present Section is devoted to a general discussion on the gauge dependence/independence
of the quantities entering the vacuum stability analysis. To fix the ideas, let us assume that all
the parameters of the SM are exactly determined, but the Higgs boson mass. After choosing the
renormalization scale t, the RG improved e↵ective potential, Ve↵(�,Mh; ⇠), is a function of �, the
Higgs pole mass Mh, and the gauge fixing parameters, which are collectively denoted by ⇠. One can
think of Mh as an order parameter, whose variation modifies the shape of the e↵ective potential,
as for instance sketched in Fig. 1.

The absolute stability bound on the Higgs boson mass can be obtained by defining a “critical”
mass, M c

h, for which the value of the e↵ective potential at the electroweak minimum, �ew, and at
a second minimum, �̃ > �ew, are the same. Analytically, this translates into the three conditions:
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In the � � �ew limit, the RG improved SM e↵ective potential is well approximated by
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Vacuum stability bound
• Take all the parameters of the SM fixed but the Higgs mass: 

Critical Higgs mass

3 Physical observables in the vacuum stability analysis

The present Section is devoted to a general discussion on the gauge dependence/independence
of the quantities entering the vacuum stability analysis. To fix the ideas, let us assume that all
the parameters of the SM are exactly determined, but the Higgs boson mass. After choosing the
renormalization scale t, the RG improved effective potential, Veff(φ,Mh; ξ), is a function of φ, the
Higgs pole mass Mh, and the gauge fixing parameters, which are collectively denoted by ξ. One can
think of Mh as an order parameter, whose variation modifies the shape of the effective potential,
as for instance sketched in Fig. 1.
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Figure 1: Schematic representation of the SM effective potential for different values of the Higgs
boson mass. For Mh < M c

h, the electroweak vacuum is unstable.

The absolute stability bound on the Higgs boson mass can be obtained by defining a “critical”
mass, M c

h, for which the value of the effective potential at the electroweak minimum, φew, and at
a second minimum, φ̃ > φew, are the same. Analytically, this translates into the three conditions:

Veff(φew,M
c
h; ξ)− Veff(φ̃,M

c
h; ξ) = 0 , (62)
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In the φ ≫ φew limit, the RG improved SM effective potential is well approximated by

Veff(φ) =

(

Ωeff(φ)

φ4
−

1

2

m2
eff(φ)

φ2
+

1

4
λeff(φ)
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Indeed, at the leading order in the m2/φ2 expansion, where m2 ∼ φ2
ew is the electroweak parameter

of the Higgs potential, the effective couplings Ωeff and m2
eff turn out to be proportional to m4 and

m2 respectively.6 Hence, the absolute stability condition in Eqs. (62)–(63) can be equivalently
rewritten in the following way [5]:

λeff(φ̃,M
c
h; ξ) = 0 , (65)

∂λeff
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h

= 0 , (66)

6 Moreover, since the beta function of m is proportional to m itself, the value of m does not change much even
after a scale running of many orders of magnitude.
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and subject to the boundary condition �i(0) = �i.
The usefulness of the RG is that t can be chosen in such a way that the convergence of

perturbation theory is improved. For instance, a standard choice in vacuum stability analyses is
µ(t) = � (see e.g. Ref. [6]). Without sticking, for the time being, to any specific choice of scale,
the RG improved e↵ective potential can be rewritten as

Ve↵(�, t) = ⌦e↵(�, t)� m2
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where the functional form of the e↵ective couplings in Eq. (68) depends on the chosen gauge. In
particular, in the � � m limit the e↵ective potential takes the universal form
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since � is the only massive parameter. The coe�cients Np, Cp and p appearing in Eq. (70) are
explicitly listed in Table 1 for the Fermi gauge and in Table 2 of Appendix B for the background
R⇠ gauge.
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Table 1: The p-coe�cients entering the expression of �e↵ in Eq. (70) for the Fermi gauge.

Let us finally note that the gauge dependence of the RG improved e↵ective potential is twofold.
The gauge fixing parameters appear both in the couplings p (cf. Table 1), and in the anomalous
dimension of � (cf. Eq. (110) in Appendix A) and hence in its integral �.

3 Physical observables in the vacuum stability analysis

The present Section is devoted to a general discussion on the gauge dependence/independence
of the quantities entering the vacuum stability analysis. To fix the ideas, let us assume that all
the parameters of the SM are exactly determined, but the Higgs boson mass. After choosing the
renormalization scale t, the RG improved e↵ective potential, Ve↵(�,Mh; ⇠), is a function of �, the
Higgs pole mass Mh, and the gauge fixing parameters, which are collectively denoted by ⇠. One can
think of Mh as an order parameter, whose variation modifies the shape of the e↵ective potential,
as for instance sketched in Fig. 1.

The absolute stability bound on the Higgs boson mass can be obtained by defining a “critical”
mass, M c

h, for which the value of the e↵ective potential at the electroweak minimum, �ew, and at
a second minimum, �̃ > �ew, are the same. Analytically, this translates into the three conditions:
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since � is the only massive parameter. The coe�cients Np, Cp and p appearing in Eq. (70) are
explicitly listed in Table 1 for the Fermi gauge and in Table 2 of Appendix B for the background
R⇠ gauge.
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Table 1: The p-coe�cients entering the expression of �e↵ in Eq. (70) for the Fermi gauge.

Let us finally note that the gauge dependence of the RG improved e↵ective potential is twofold.
The gauge fixing parameters appear both in the couplings p (cf. Table 1), and in the anomalous
dimension of � (cf. Eq. (109) in Appendix A) and hence in its integral �.

3 Physical observables in the vacuum stability analysis

The present Section is devoted to a general discussion on the gauge dependence/independence
of the quantities entering the vacuum stability analysis. To fix the ideas, let us assume that all
the parameters of the SM are exactly determined, but the Higgs boson mass. After choosing the
renormalization scale t, the RG improved e↵ective potential, Ve↵(�,Mh; ⇠), is a function of �, the
Higgs pole mass Mh, and the gauge fixing parameters, which are collectively denoted by ⇠. One can
think of Mh as an order parameter, whose variation modifies the shape of the e↵ective potential,
as for instance sketched in Fig. 1.

The absolute stability bound on the Higgs boson mass can be obtained by defining a “critical”
mass, M c

h, for which the value of the e↵ective potential at the electroweak minimum, �ew, and at
a second minimum, �̃ > �ew, are the same. Analytically, this translates into the three conditions:
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Figure 1: Schematic representation of the SM e↵ective potential for di↵erent values of the Higgs
boson mass. For Mh < M c

h, the electroweak vacuum is unstable.

Indeed, at the leading order in the m2/�2 expansion, where m2 ⇠ �2
ew is the electroweak parameter

of the Higgs potential, the e↵ective couplings ⌦e↵ and m2
e↵ turn out to be proportional to m4 and

m2 respectively.6 Hence, the absolute stability condition in Eqs. (71)–(72) can be equivalently
rewritten in the following way [5]:

�e↵(�̃,M
c
h; ⇠) = 0 (74)
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�̃,Mc

h

= 0 (75)

up to �2
ew/�̃

2 ⌧ 1 corrections.
On the other hand, due to the explicit presence of ⇠ in the vacuum stability condition, it is

not obvious a priori which are the physical (gauge-independent) observables entering the vacuum
stability analysis. The basic tool, in order to capture the gauge-invariant content of the e↵ective
potential is given by the Nielsen identity [30]

@

@⇠
Ve↵(�, ⇠) = �C(�, ⇠)
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Ve↵(�, ⇠) , (76)
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◆
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where C(�, ⇠) is a correlator involving the ghost fields and the gauge-fixing functional, whose
explicit expression will not be needed for our argument. Eq. (77) is valid for the class of linear
gauges and can be derived from the BRST non-invariance of a composite operator involving the
ghost field and the gauge fixing functional (see e.g. [37] for a concise derivation).

The identity in Eq. (77) carries the following interpretation: the e↵ective potential is gauge
independent where it is stationary and hence spontaneous symmetry breaking is a gauge-invariant
statement. In the rest of this section we will use the Nielsen identity, in combination with the
vacuum stability condition in Eqs. (71)–(72), in order to formally prove that the critical Higgs
boson mass, M c

h, is a gauge-independent quantity, while the extrema of the e↵ective potential

6 Moreover, since the beta function of m is proportional to m itself, the value of m does not change much even
after a scale running of many orders of magnitude.
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With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.
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1.                      (gauge indep. of the critical Higgs mass)

(e.g. �̃) or the point where Ve↵ takes a special value (for instance zero) are essentially gauge
dependent.

Our arguments are similar to those presented in Ref. [46], about the gauge independence of
the critical temperature of a first order phase transition in the context of the finite temperature
e↵ective potential.

3.1 Gauge independence of the critical Higgs boson mass

Let us assume that simultaneously inverting Eqs. (71)–(72) would yield gauge dependent field
values and critical Higgs boson mass: �ew = �ew(⇠), �̃ = �̃(⇠) and M c

h = M c
h(⇠). The total

di↵erential of Eq. (71) with respect to ⇠ then reads
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The first term in both the left-hand side (lhs) and the right-hand side (rhs) of Eq. (78) vanishes
because of the stationary conditions in Eq. (72). The third term in both the lhs and the rhs of
Eq. (78) vanishes for the same reason, after using the Nielsen identity. Hence, we are left with
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Since the expression in the bracket of Eq. (80) is in general di↵erent from zero, one concludes that

@M c
h

@⇠
= 0 , (80)

namely, the critical Higgs boson mass is gauge independent. Let us notice, however, that the
statement above formally holds at all orders in perturbation theory.

3.2 Gauge dependence of the extrema of the e↵ective potential

Let us consider now the total di↵erential with respect to ⇠ of the second expression in Eq. (72)
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The second term is zero due to Eq. (80). By di↵erentiating the Nielsen identity with respect to �,
and evaluating it at the point (�̃,M c

h), we get
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The first term in the rhs of Eq. (82) vanishes because of the stationary condition in Eq. (72).
Hence, we can substitute the third term in Eq. (81), by means of Eq. (82), and get:
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Since the curvature at the extremum is in general di↵erent from zero, Eq. (83) implies
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= C(�̃, ⇠) . (84)
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The first term in the rhs of Eq. (82) vanishes because of the stationary condition in Eq. (72).
Hence, we can substitute the third term in Eq. (81), by means of Eq. (82), and get:
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The same holds for any extremum of the e↵ective potential, like e.g. the maximum in Fig. 1 or the
electroweak minimum �ew. This latter fact should not actually come as a surprise. The explicit
gauge dependence of the unrenormalized �ew in the R⇠ gauge was discussed for instance in [54] and
in the case of the SM it can be found in [55]. A renormalized gauge-invariant �ew can always be
defined by subtracting the divergent and gauge-dependent contributions to �ew at on-shell points
in terms of physical quantities.

3.3 Gauge dependence of the SM vacuum instability scale

The SM vacuum instability scale is operatively defined as the field value � = ⇤, for which the
e↵ective potential has the same depth of the electroweak minimum (see e.g. Fig. 1). This is
analytically expressed by

Ve↵(⇤; ⇠) = Ve↵(�ew; ⇠) . (85)

The rhs of Eq. (85) is a gauge-independent quantity, since �ew is by definition a minimum and
we can apply the Nielsen identity. Hence, by solving Eq. (85), one has in general ⇤ = ⇤(⇠). In
particular, by taking the total di↵erential of Eq. (85) with respect to ⇠, we get
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By using the Nielsen identity, we can substitute back the second term in Eq. (86), thus obtaining
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Since, in general, ⇤ is not an extremum of the e↵ective potential, Eq. (87) yields
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= C(⇤, ⇠) . (88)
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Figure 1: Schematic representation of the SM e↵ective potential for di↵erent values of the Higgs
boson mass. For Mh < M c

h, the electroweak vacuum is unstable.

Indeed, at the leading order in the m2/�2 expansion, where m2 ⇠ �2
ew is the electroweak parameter

of the Higgs potential, the e↵ective couplings ⌦e↵ and m2
e↵ turn out to be proportional to m4 and

m2 respectively.6 Hence, the absolute stability condition in Eqs. (71)–(72) can be equivalently
rewritten in the following way [5]:

�e↵(�̃,M
c
h; ⇠) = 0 (74)
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�̃,Mc

h

= 0 (75)

up to �2
ew/�̃

2 ⌧ 1 corrections.
On the other hand, due to the explicit presence of ⇠ in the vacuum stability condition, it is

not obvious a priori which are the physical (gauge-independent) observables entering the vacuum
stability analysis. The basic tool, in order to capture the gauge-invariant content of the e↵ective
potential is given by the Nielsen identity [30]
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where C(�, ⇠) is a correlator involving the ghost fields and the gauge-fixing functional, whose
explicit expression will not be needed for our argument. Eq. (77) is valid for the class of linear
gauges and can be derived from the BRST non-invariance of a composite operator involving the
ghost field and the gauge fixing functional (see e.g. [37] for a concise derivation).

The identity in Eq. (77) carries the following interpretation: the e↵ective potential is gauge
independent where it is stationary and hence spontaneous symmetry breaking is a gauge-invariant
statement. In the rest of this section we will use the Nielsen identity, in combination with the
vacuum stability condition in Eqs. (71)–(72), in order to formally prove that the critical Higgs
boson mass, M c

h, is a gauge-independent quantity, while the extrema of the e↵ective potential

6 Moreover, since the beta function of m is proportional to m itself, the value of m does not change much even
after a scale running of many orders of magnitude.
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With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.

2

Nielsen Identity

 Luca Di Luzio (KIT) - On the gauge dependence of the SM vacuum instability scale    10/13

- the value of the EP at the extrema is gauge independent



Physical observables
• Nielsen Identity (NI)                                        
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(e.g. �̃) or the point where Ve↵ takes a special value (for instance zero) are essentially gauge
dependent.

Our arguments are similar to those presented in Ref. [46], about the gauge independence of
the critical temperature of a first order phase transition in the context of the finite temperature
e↵ective potential.

3.1 Gauge independence of the critical Higgs boson mass

Let us assume that simultaneously inverting Eqs. (71)–(72) would yield gauge dependent field
values and critical Higgs boson mass: �ew = �ew(⇠), �̃ = �̃(⇠) and M c

h = M c
h(⇠). The total

di↵erential of Eq. (71) with respect to ⇠ then reads
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The first term in both the left-hand side (lhs) and the right-hand side (rhs) of Eq. (78) vanishes
because of the stationary conditions in Eq. (72). The third term in both the lhs and the rhs of
Eq. (78) vanishes for the same reason, after using the Nielsen identity. Hence, we are left with
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Since the expression in the bracket of Eq. (80) is in general di↵erent from zero, one concludes that

@M c
h
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= 0 , (80)

namely, the critical Higgs boson mass is gauge independent. Let us notice, however, that the
statement above formally holds at all orders in perturbation theory.

3.2 Gauge dependence of the extrema of the e↵ective potential

Let us consider now the total di↵erential with respect to ⇠ of the second expression in Eq. (72)
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The second term is zero due to Eq. (80). By di↵erentiating the Nielsen identity with respect to �,
and evaluating it at the point (�̃,M c

h), we get
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The first term in the rhs of Eq. (82) vanishes because of the stationary condition in Eq. (72).
Hence, we can substitute the third term in Eq. (81), by means of Eq. (82), and get:
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Since the curvature at the extremum is in general di↵erent from zero, Eq. (83) implies
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h

!
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h
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Since the expression in the bracket of Eq. (80) is in general di↵erent from zero, one concludes that

@M c
h
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= 0 , (80)

namely, the critical Higgs boson mass is gauge independent. Let us notice, however, that the
statement above formally holds at all orders in perturbation theory.

3.2 Gauge dependence of the extrema of the e↵ective potential

Let us consider now the total di↵erential with respect to ⇠ of the second expression in Eq. (72)
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The second term is zero due to Eq. (80). By di↵erentiating the Nielsen identity with respect to �,
and evaluating it at the point (�̃,M c

h), we get
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The first term in the rhs of Eq. (82) vanishes because of the stationary condition in Eq. (72).
Hence, we can substitute the third term in Eq. (81), by means of Eq. (82), and get:
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Since the curvature at the extremum is in general di↵erent from zero, Eq. (83) implies

@�̃
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= C(�̃, ⇠) . (84)
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The same holds for any extremum of the e↵ective potential, like e.g. the maximum in Fig. 1 or the
electroweak minimum �ew. This latter fact should not actually come as a surprise. The explicit
gauge dependence of the unrenormalized �ew in the R⇠ gauge was discussed for instance in [54] and
in the case of the SM it can be found in [55]. A renormalized gauge-invariant �ew can always be
defined by subtracting the divergent and gauge-dependent contributions to �ew at on-shell points
in terms of physical quantities.

3.3 Gauge dependence of the SM vacuum instability scale

The SM vacuum instability scale is operatively defined as the field value � = ⇤, for which the
e↵ective potential has the same depth of the electroweak minimum (see e.g. Fig. 1). This is
analytically expressed by
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The rhs of Eq. (85) is a gauge-independent quantity, since �ew is by definition a minimum and
we can apply the Nielsen identity. Hence, by solving Eq. (85), one has in general ⇤ = ⇤(⇠). In
particular, by taking the total di↵erential of Eq. (85) with respect to ⇠, we get
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By using the Nielsen identity, we can substitute back the second term in Eq. (86), thus obtaining
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Since, in general, ⇤ is not an extremum of the e↵ective potential, Eq. (87) yields
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= C(⇤, ⇠) . (88)
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• By using NI one can formally prove:

[Nielsen (1975), Aitchison, Fraser (1984), Johnston (1985), 	

Metaxas, Weinberg (1996), …]

• Interpretation: 
- the value of the EP at the extrema is gauge independent

Φew Φ
"#

Veff

Φ

Mh
c

Mh$Mh
c

Mh%Mh
c

Figure 1: Schematic representation of the SM e↵ective potential for di↵erent values of the Higgs
boson mass. For Mh < M c

h, the electroweak vacuum is unstable.

Indeed, at the leading order in the m2/�2 expansion, where m2 ⇠ �2
ew is the electroweak parameter

of the Higgs potential, the e↵ective couplings ⌦e↵ and m2
e↵ turn out to be proportional to m4 and

m2 respectively.6 Hence, the absolute stability condition in Eqs. (71)–(72) can be equivalently
rewritten in the following way [5]:

�e↵(�̃,M
c
h; ⇠) = 0 (74)

@�e↵

@�

����
�̃,Mc

h

= 0 (75)

up to �2
ew/�̃

2 ⌧ 1 corrections.
On the other hand, due to the explicit presence of ⇠ in the vacuum stability condition, it is

not obvious a priori which are the physical (gauge-independent) observables entering the vacuum
stability analysis. The basic tool, in order to capture the gauge-invariant content of the e↵ective
potential is given by the Nielsen identity [30]

@

@⇠
Ve↵(�, ⇠) = �C(�, ⇠)

@

@�
Ve↵(�, ⇠) , (76)

✓
@

@⇠
+ C(�, ⇠)

@

@�

◆
Ve↵(�, ⇠) = 0 (77)

where C(�, ⇠) is a correlator involving the ghost fields and the gauge-fixing functional, whose
explicit expression will not be needed for our argument. Eq. (77) is valid for the class of linear
gauges and can be derived from the BRST non-invariance of a composite operator involving the
ghost field and the gauge fixing functional (see e.g. [37] for a concise derivation).

The identity in Eq. (77) carries the following interpretation: the e↵ective potential is gauge
independent where it is stationary and hence spontaneous symmetry breaking is a gauge-invariant
statement. In the rest of this section we will use the Nielsen identity, in combination with the
vacuum stability condition in Eqs. (71)–(72), in order to formally prove that the critical Higgs
boson mass, M c

h, is a gauge-independent quantity, while the extrema of the e↵ective potential

6 Moreover, since the beta function of m is proportional to m itself, the value of m does not change much even
after a scale running of many orders of magnitude.
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i

2
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Z
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Z
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=

Z
D� exp

 
i

Z
d4x

 
L(�c) + j�c + �

 
@L
@�

����
�c

+ j

!
+

1

2
�2 @2L

@�2

����
�c

+ . . .

!!

eiW [j] ⇡ exp

✓
i

Z
d4x (L(�c) + j�c)

◆�
det iD�1{�c, x� y}��

1
2 (12)

With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.
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Nielsen Identity
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RGE improvement
• Resum the large logs by means of RGEs

that in the Fermi gauge the field � gets only multiplicatively renormalized by the wavefunction of
the Higgs field. This feature is due to the invariance of the complete SM Lagrangian (including
the gauge-fixing term in Eq. (23)) under the transformation h ! h+ a and � ! � � a, as shown
in [52,53]. As we will see in Appendix B, this property does not hold anymore in the background
R⇠ gauge.

Hence, after the renormalization procedure, the one-loop contribution to the e↵ective potential
in the MS scheme reads
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where the definitions of the �-dependent mass terms are given in Eqs. (24)–(28) and Eqs. (45)–(47).
In particular, for ⇠W = ⇠B = 0 one has m̄A+ = m̄B+ = m̄� and m̄A� = m̄B� = 0, so that Eq. (??)
reproduces the standard one-loop result in the Landau gauge [24].

Let us stress that the gauge dependence of V (1)
e↵ cannot be removed by a suitable choice of

the renormalization scheme, as it can be verified by adding finite terms in Eqs. (55)–(57). Notice,
however, that on the tree-level minimum, m2 = ��2 (hence m̄� = 0 and m̄A± = m̄B± = 0), the

gauge dependence drops from V
(1)
e↵ |Fermi. We will discuss this aspect in more detail in Sect. 3.

2.2 Renormalization group improvement

In applications where the behavior of Ve↵(�) at large � is needed, like for the vacuum stability
analysis, one has to deal with potentially large logarithms of the type log(�/µ) which may spoil
the range of application of perturbation theory. The standard way to resum such logarithms is by
means of the RGEs. Since Ve↵ is independent of the renormalization scale µ for fixed values of the
bare parameters, one obtains the RGE
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µ
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@µ
+ �i

@

@�i
� ��

@
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◆
Ve↵ = 0 , (58)

where the beta functions

�i = µ
d�i

dµ
, (59)

correspond to each of the SM coupling �i (including the gauge-fixing parameters) and the anoma-
lous dimension of the background field is defined by

� = �µ

�

d�

dµ
. (60)

The formal solution of the RGE in Eq. (58) can be obtained by applying the method of the
characteristics [16]:

Ve↵(µ,�i,�) = Ve↵(µ(t),�i(t),�(t)) , (61)

where

µ(t) = µet , (62)

�(t) = e�(t)� , (63)

with

�(t) = �
Z t

0
�(�(t0)) dt0 , (64)

and �i(t) are the SM running couplings, determined by the equation

d�i(t)

dt
= �i(�i(t)) , (65)
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and subject to the boundary condition �i(0) = �i.
The usefulness of the RG is that t can be chosen in such a way that the convergence of

perturbation theory is improved. For instance, a standard choice in vacuum stability analyses is
µ(t) = � (see e.g. Ref. [6]). Without sticking, for the time being, to any specific choice of scale,
the RG improved e↵ective potential can be rewritten as

Ve↵(�, t) = ⌦e↵(�, t)� m2
e↵(�, t)

2
�2 +

�e↵(�, t)

4
�4 , (66)

where the functional form of the e↵ective couplings in Eq. (66) depends on the chosen gauge. In
particular, in the � � m limit the e↵ective potential takes the universal form

Ve↵(�, t) ⇡ �e↵(�, t)

4
�4 , (67)

with

�e↵(�, t) ⇡ e4�(t)

"
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log

p(t)e2�(t)�2

µ(t)2
� Cp

!#
, (68)

since � is the only massive parameter. The coe�cients Np, Cp and p appearing in Eq. (68) are
explicitly listed in Table 1 for the Fermi gauge and in Table 2 of Appendix B for the background
R⇠ gauge.

p t W Z h A± B±

Np �12 6 3 1 2 1
Cp

3
2

5
6

5
6

3
2

3
2

3
2

p
y2t
2
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4 3� 1
2

⇣
�±

p
�2 � �⇠W g2

⌘
1
2

⇣
�±p�2 � �(⇠W g2 + ⇠Bg02)

⌘

Table 1: The p-coe�cients entering the expression of �e↵ in Eq. (68) for the Fermi gauge.

Let us finally note that the gauge dependence of the RG improved e↵ective potential is twofold.
The gauge fixing parameters appear both in the couplings p (cf. Table 1), and in the anomalous
dimension of � (cf. Eq. (107) in Appendix A) and hence in its integral �.

3 Physical observables in the vacuum stability analysis

The present Section is devoted to a general discussion on the gauge dependence/independence
of the quantities entering the vacuum stability analysis. To fix the ideas, let us assume that all
the parameters of the SM are exactly determined, but the Higgs boson mass. After choosing the
renormalization scale t, the RG improved e↵ective potential, Ve↵(�,Mh; ⇠), is a function of �, the
Higgs pole mass Mh, and the gauge fixing parameters, which are collectively denoted by ⇠. One can
think of Mh as an order parameter, whose variation modifies the shape of the e↵ective potential,
as for instance sketched in Fig. 1.

The absolute stability bound on the Higgs boson mass can be obtained by defining a “critical”
mass, M c

h, for which the value of the e↵ective potential at the electroweak minimum, �ew, and at
a second minimum, �̃ > �ew, are the same. Analytically, this translates into the three conditions:

Ve↵(�ew,M
c
h; ⇠)� Ve↵(�̃,M

c
h; ⇠) = 0 , (69)
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= 0 . (70)

In the � � �ew limit, the RG improved SM e↵ective potential is well approximated by

Ve↵(�) =
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where the definitions of the �-dependent mass terms are given in Eqs. (24)–(28) and Eqs. (45)–(47).
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the renormalization scheme, as it can be verified by adding finite terms in Eqs. (55)–(57). Notice,
however, that on the tree-level minimum, m2 = ��2 (hence m̄� = 0 and m̄A± = m̄B± = 0), the

gauge dependence drops from V
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e↵ |Fermi. We will discuss this aspect in more detail in Sect. 3.
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and subject to the boundary condition �i(0) = �i.
The usefulness of the RG is that t can be chosen in such a way that the convergence of

perturbation theory is improved. For instance, a standard choice in vacuum stability analyses is
µ(t) = � (see e.g. Ref. [6]). Without sticking, for the time being, to any specific choice of scale,
the RG improved e↵ective potential can be rewritten as

Ve↵(�, t) = ⌦e↵(�, t)� m2
e↵(�, t)

2
�2 +

�e↵(�, t)

4
�4 , (66)

where the functional form of the e↵ective couplings in Eq. (66) depends on the chosen gauge. In
particular, in the � � m limit the e↵ective potential takes the universal form

Ve↵(�, t) ⇡ �e↵(�, t)

4
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since � is the only massive parameter. The coe�cients Np, Cp and p appearing in Eq. (68) are
explicitly listed in Table 1 for the Fermi gauge and in Table 2 of Appendix B for the background
R⇠ gauge.
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Table 1: The p-coe�cients entering the expression of �e↵ in Eq. (68) for the Fermi gauge.

Let us finally note that the gauge dependence of the RG improved e↵ective potential is twofold.
The gauge fixing parameters appear both in the couplings p (cf. Table 1), and in the anomalous
dimension of � (cf. Eq. (107) in Appendix A) and hence in its integral �.

3 Physical observables in the vacuum stability analysis

The present Section is devoted to a general discussion on the gauge dependence/independence
of the quantities entering the vacuum stability analysis. To fix the ideas, let us assume that all
the parameters of the SM are exactly determined, but the Higgs boson mass. After choosing the
renormalization scale t, the RG improved e↵ective potential, Ve↵(�,Mh; ⇠), is a function of �, the
Higgs pole mass Mh, and the gauge fixing parameters, which are collectively denoted by ⇠. One can
think of Mh as an order parameter, whose variation modifies the shape of the e↵ective potential,
as for instance sketched in Fig. 1.

The absolute stability bound on the Higgs boson mass can be obtained by defining a “critical”
mass, M c

h, for which the value of the e↵ective potential at the electroweak minimum, �ew, and at
a second minimum, �̃ > �ew, are the same. Analytically, this translates into the three conditions:
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that in the Fermi gauge the field � gets only multiplicatively renormalized by the wavefunction of
the Higgs field. This feature is due to the invariance of the complete SM Lagrangian (including
the gauge-fixing term in Eq. (23)) under the transformation h ! h+ a and � ! � � a, as shown
in [52,53]. As we will see in Appendix B, this property does not hold anymore in the background
R⇠ gauge.

Hence, after the renormalization procedure, the one-loop contribution to the e↵ective potential
in the MS scheme reads
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where the definitions of the �-dependent mass terms are given in Eqs. (24)–(28) and Eqs. (45)–(47).
In particular, for ⇠W = ⇠B = 0 one has m̄A+ = m̄B+ = m̄� and m̄A� = m̄B� = 0, so that Eq. (??)
reproduces the standard one-loop result in the Landau gauge [24].

Let us stress that the gauge dependence of V (1)
e↵ cannot be removed by a suitable choice of

the renormalization scheme, as it can be verified by adding finite terms in Eqs. (55)–(57). Notice,
however, that on the tree-level minimum, m2 = ��2 (hence m̄� = 0 and m̄A± = m̄B± = 0), the

gauge dependence drops from V
(1)
e↵ |Fermi. We will discuss this aspect in more detail in Sect. 3.

2.2 Renormalization group improvement

In applications where the behavior of Ve↵(�) at large � is needed, like for the vacuum stability
analysis, one has to deal with potentially large logarithms of the type log(�/µ) which may spoil
the range of application of perturbation theory. The standard way to resum such logarithms is by
means of the RGEs. Since Ve↵ is independent of the renormalization scale µ for fixed values of the
bare parameters, one obtains the RGE
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characteristics [16]:
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the renormalization scheme, as it can be verified by adding finite terms in Eqs. (55)–(57). Notice,
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gauge dependence drops from V
(1)
e↵ |Fermi. We will discuss this aspect in more detail in Sect. 3.
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analysis, one has to deal with potentially large logarithms of the type log(�/µ) which may spoil
the range of application of perturbation theory. The standard way to resum such logarithms is by
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that in the Fermi gauge the field � gets only multiplicatively renormalized by the wavefunction of
the Higgs field. This feature is due to the invariance of the complete SM Lagrangian (including
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and subject to the boundary condition �i(0) = �i.
The usefulness of the RG is that t can be chosen in such a way that the convergence of

perturbation theory is improved. For instance, a standard choice in vacuum stability analyses is
µ(t) = � (see e.g. Ref. [6]). Without sticking, for the time being, to any specific choice of scale,
the RG improved e↵ective potential can be rewritten as

Ve↵(�, t) = ⌦e↵(�, t)� m2
e↵(�, t)

2
�2 +

�e↵(�, t)

4
�4 , (66)

where the functional form of the e↵ective couplings in Eq. (66) depends on the chosen gauge. In
particular, in the � � m limit the e↵ective potential takes the universal form
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since � is the only massive parameter. The coe�cients Np, Cp and p appearing in Eq. (68) are
explicitly listed in Table 1 for the Fermi gauge and in Table 2 of Appendix B for the background
R⇠ gauge.
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Table 1: The p-coe�cients entering the expression of �e↵ in Eq. (68) for the Fermi gauge.

Let us finally note that the gauge dependence of the RG improved e↵ective potential is twofold.
The gauge fixing parameters appear both in the couplings p (cf. Table 1), and in the anomalous
dimension of � (cf. Eq. (107) in Appendix A) and hence in its integral �.

3 Physical observables in the vacuum stability analysis

The present Section is devoted to a general discussion on the gauge dependence/independence
of the quantities entering the vacuum stability analysis. To fix the ideas, let us assume that all
the parameters of the SM are exactly determined, but the Higgs boson mass. After choosing the
renormalization scale t, the RG improved e↵ective potential, Ve↵(�,Mh; ⇠), is a function of �, the
Higgs pole mass Mh, and the gauge fixing parameters, which are collectively denoted by ⇠. One can
think of Mh as an order parameter, whose variation modifies the shape of the e↵ective potential,
as for instance sketched in Fig. 1.

The absolute stability bound on the Higgs boson mass can be obtained by defining a “critical”
mass, M c

h, for which the value of the e↵ective potential at the electroweak minimum, �ew, and at
a second minimum, �̃ > �ew, are the same. Analytically, this translates into the three conditions:
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1 Introduction
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With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the
physical content of the e↵ective potential by means of the so-called Nielsen identities [30].
In particular, the issue of the gauge dependence of the e↵ective potential in the analysis of the
SM vacuum stability was already pointed out at the end of the 90’s by Loinaz and Willey [41],
which challenged the possibility of setting gauge-independent lower bounds on the Higgs boson
mass from vacuum stability constraints. More recently, the problematic identification between the
cuto↵ scale of the SM and the instability scale ⇤ was mentioned again in Ref. [42].

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.

2

that in the Fermi gauge the field � gets only multiplicatively renormalized by the wavefunction of
the Higgs field. This feature is due to the invariance of the complete SM Lagrangian (including
the gauge-fixing term in Eq. (23)) under the transformation h ! h+ a and � ! � � a, as shown
in [52,53]. As we will see in Appendix B, this property does not hold anymore in the background
R⇠ gauge.

Hence, after the renormalization procedure, the one-loop contribution to the e↵ective potential
in the MS scheme reads
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where the definitions of the �-dependent mass terms are given in Eqs. (24)–(28) and Eqs. (45)–(47).
In particular, for ⇠W = ⇠B = 0 one has m̄A+ = m̄B+ = m̄� and m̄A� = m̄B� = 0, so that Eq. (??)
reproduces the standard one-loop result in the Landau gauge [24].

Let us stress that the gauge dependence of V (1)
e↵ cannot be removed by a suitable choice of

the renormalization scheme, as it can be verified by adding finite terms in Eqs. (55)–(57). Notice,
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2.2 Renormalization group improvement

In applications where the behavior of Ve↵(�) at large � is needed, like for the vacuum stability
analysis, one has to deal with potentially large logarithms of the type log(�/µ) which may spoil
the range of application of perturbation theory. The standard way to resum such logarithms is by
means of the RGEs. Since Ve↵ is independent of the renormalization scale µ for fixed values of the
bare parameters, one obtains the RGE

✓
µ

@

@µ
+ �i

@

@�i
� ��

@

@�

◆
Ve↵ = 0 , (58)

where the beta functions

�i = µ
d�i

dµ
, (59)

correspond to each of the SM coupling �i (including the gauge-fixing parameters) and the anoma-
lous dimension of the background field is defined by

� = �µ

�

d�

dµ
. (60)

The formal solution of the RGE in Eq. (58) can be obtained by applying the method of the
characteristics [16]:

Ve↵(µ,�i,�) = Ve↵(µ(t),�i(t),�(t)) , (61)

where

µ(t) = µet , (62)

�(t) = e�(t)� , (63)

with

�(t) = �
Z t

0
�(�(t0)) dt0 , (64)

and �i(t) are the SM running couplings, determined by the equation

d�i(t)

dt
= �i(�i(t)) , (65)
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A Renormalization group equations

In terms of the parameters ↵1 = 5
3
g02

4⇡ , ↵2 = g2

4⇡ , ↵3 =
g23
4⇡ , ↵t =

y2t
4⇡ and ↵� = �

4⇡ , the two-loop
RGEs used in the numerical analysis for the case of the Fermi gauge are [51, 66–68]
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In the case of the background R⇠ gauge (see Appendix B), the one-loop running of the field � is
found to be
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Notice that, by perturbatively expanding the RGE satisfied by the e↵ective potential in Eq. (60) at
the first non-trivial order, the gauge-dependent parts of the one-loop anomalous dimension can be

extracted from the µ-dependent terms of V (1)
e↵ , which provides a non-trivial check of the calculation.
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SM instability scale in the Fermi gauge
• Instability scale operatively defined as                 

4 Numerical analysis

In this Section we numerically estimate the gauge dependence of the SM vacuum instability scale
⇤. Let us first focus on the case of the Fermi gauge. Since in the SM ⇤ � �ew, the condition in
Eq. (85) is well approximated by (see also Eq. (73))

�e↵(⇤) = 0 , (90)

up to corrections of O(�2
ew/⇤

2) . For the onset of the RG running, we choose µ(0) = Mt (hence
µ(t) = Mte

t), where Mt = 173.35 GeV is the pole mass of the top quark and we consider the
central values of the SM parameters taken from [9]:7

�(Mt) = 0.12710 , (91)

yt(Mt) = 0.93697 , (92)

g3(Mt) = 1.1666 , (93)

g(Mt) = 0.6483 , (94)

g0(Mt) = 0.3587 . (95)

In order to resum possible large logs in Eq. (70) due to the growth of the anomalous dimension,
we make the scale choice

µ(t) = e�(t)� , (96)

which implicitly defines t as a function of �. Then the e↵ective quartic coupling can be written as

�e↵(�) = e4�(t(�))

"
�(t(�)) +

1

(4⇡)2

X

p

Np
2
p(t(�))

�
log p(t(�))� Cp

�
#
. (97)

Since the overall exponential factor in Eq. (96) never changes the zeros of �e↵(�), in order to find
the instability scale, ⇤, it is equivalent (and also numerically more convenient) to seek directly the
zeros of �e↵(�)e�4�(t(�)) in terms of the parameter t⇤ ⌘ t(⇤), defined by8

�(t⇤) +
1

(4⇡)2

X

p

Np
2
p(t⇤)

�
log p(t⇤)� Cp

�
= 0 , (98)

and then relate it to the instability scale by inverting Eq. (95)

⇤ = µ(t⇤)e
��(t⇤) = Mte

t⇤��(t⇤) , (99)

where we recall the definition (see Eq. (66))

�(t⇤) = �
Z t⇤

0
�(t) dt . (100)

Before discussing in more detail the gauge dependence of ⇤, let us turn to the issue of the UV
behaviour of the gauge fixing parameters ⇠W and ⇠B for the Fermi gauge. Their RGEs are collected
in Appendix A and can be easily integrated at one loop (see Appendix A.1). While the running of
the Abelian gauge-fixing parameter ⇠B is very simple (⇠Bg02 is actually constant under the RG flow,
as a consequence of a Ward identity) two peculiar RG behaviours can be identified for ⇠W . For
⇠W (Mt) � 1

6 one has a quasi-fixed point in the UV (cf. left panel in Fig. 2), while, for ⇠W (Mt) < 0,
the running can easily generate a Landau pole (cf. right panel in Fig. 2).

7Notice that these values are extracted from experimental data with two-loop accuracy. However, we will not
perform a NNLO analysis, since the issue of the gauge dependence of the instability scale already arises at the NLO
level.

8It may actually happen that � turns negative before approaching the instability scale. In such a case, log p

develops an imaginary part for p = h,A±, B± (see Table 1). Though the imaginary part of the e↵ective potential
might have an interpretation in terms of a decay rate of an unstable state [56], the role of such an imaginary
component for the determination of the instability scale is unclear. Hence, we pragmatically require only the real
part of Eq. (97) to be zero and notice that this problem has nothing to do with the issue of the gauge dependence,
since it occurs also in the standard analysis in the Landau gauge.
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Figure 4: Instability scale as a function of ⇠ ⌘ ⇠W (Mt) = ⇠B(Mt) for the Fermi gauge. The
dashed line corresponds to the case where the gauge-fixing parameters are not run. The full line
encodes the resummation of the next-to-leading logs by means of two-loop RGEs.

one-loop contribution, thus obtaining (cf. Eq. (110) in Appendix A):

����
⇠2W↵2

2

(4⇡)2

���� <
����
⇠W↵2

4⇡

���� , (102)

which sets the absolute upper bound

|⇠W | < 4⇡

↵2
. (103)

Taking ↵2(Mt) ⇡ 0.033,9 one gets |⇠W (Mt)| < 376. Notice, however, that this estimate does not
take into account the running of ⇠W . For ⇠W (Mt) . �5 a Landau pole can be developed before
the Planck scale (cf. right panel in Fig. 2), and perturbation theory starts soon to break down.
This is why we do not show the negative branch of the plot in Fig. 4. On the contrary, the running
behaviour for ⇠ � 0 is smoother, with a quasi-fixed point in the UV for ⇠W (cf. left panel in
Fig. 2). By studying the evolution of the gauge-dependent anomalous dimension at one, two and
three loops we verified, for instance, that ⇠ ⇡ 300 is still in the perturbative regime. Nonetheless,
for a more solid statement about the perturbative domain of ⇠, one should inspect the gauge
dependent two-loop e↵ective potential, whose calculation goes beyond the scope of the present
paper and its postponed for a future work. One can imagine, however, that a similar condition
as in Eq. (101) will be at play, since the gauge-fixing parameters are always associated with the
square of the gauge couplings, both in the propagators and in the vertices of the theory.

Finally, for a comprehensive analysis one should also vary the gauge-fixing condition itself. In
Appendix B we report on the calculation of the SM one-loop e↵ective potential in a background R⇠

gauge. A numerical study, similar to the one presented in this Section, shows that the instability
scale decreases by another order of magnitude when the gauge-fixing parameters are varied in
their perturbative domain. Such a qualitatively di↵erent behaviour in the background R⇠ gauge
can be understood by noticing the sign flip (with respect to the case of the Fermi gauge) in the
contribution of the gauge-fixing parameters to the one-loop anomalous dimension of � in Eq. (113).
We can thus conclude that the gauge dependence of the instability scale materializes in a variation
of about two orders of magnitude, depending on the choice of the gauge condition and of the
gauge-fixing parameters. This strengthens our statement that the instability scale ⇤ as defined in
Eq. (90) should not be interpreted as a physical quantity.

9For ↵2(µ > Mt) the bound becomes less stringent, due to the asymptotic freedom of ↵2 in the SM.
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one-loop contribution, thus obtaining (cf. Eq. (111) in Appendix A):
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⇠2W↵2
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(4⇡)2

���� <
����
⇠W↵2

4⇡

���� , (102)

which sets the absolute upper bound

|⇠W | < 4⇡

↵2
. (103)

|⇠W (Mt)| < 4⇡

↵2(Mt)
⇡ 376 (104)

Taking ↵2(Mt) ⇡ 0.033,9 one gets |⇠W (Mt)| < 376. Notice, however, that this estimate does
not take into account the running of ⇠W . For ⇠W (Mt) . �5 a Landau pole can be developed
before the Planck scale (cf. right panel in Fig. 2), and perturbation theory starts soon to break
down. This is why we do not show the negative branch of the plot in Fig. 4. On the contrary,
the running behaviour for ⇠ � 0 is smoother, with a quasi-fixed point in the UV for ⇠W (cf. left
panel in Fig. 2). By studying the evolution of the gauge-dependent anomalous dimension at one,
two and three loops we verified, for instance, that ⇠ ⇡ 300 is still in the perturbative regime.
Nonetheless, for a more solid statement about the perturbative domain of ⇠, one should inspect
the gauge dependent two-loop e↵ective potential, whose calculation goes beyond the scope of the
present paper and its postponed for a future work. One can imagine, however, that a similar
condition as in Eq. (102) will be at play, since the gauge-fixing parameters are always associated
with the square of the gauge couplings, both in the propagators and in the vertices of the theory.

Finally, for a comprehensive analysis one should also vary the gauge-fixing condition itself. In
Appendix B we report on the calculation of the SM one-loop e↵ective potential in a background R⇠

gauge. A numerical study, similar to the one presented in this Section, shows that the instability
scale decreases by another order of magnitude when the gauge-fixing parameters are varied in
their perturbative domain. Such a qualitatively di↵erent behaviour in the background R⇠ gauge
can be understood by noticing the sign flip (with respect to the case of the Fermi gauge) in the
contribution of the gauge-fixing parameters to the one-loop anomalous dimension of � in Eq. (114).
We can thus conclude that the gauge dependence of the instability scale materializes in a variation

9For ↵2(µ > Mt) the bound becomes less stringent, due to the asymptotic freedom of ↵2 in the SM.
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Conclusions
• The fate of the EW vacuum is a physical statement

- Critical Higgs mass (analogously for Top mass …) is gauge independent 
- Tunnelling probability of the EW vacuum is gauge indep. as well [Einhorn, Sato (1981), 

Metaxas, Weinberg (1996), 
Isidori, Ridolfi, Strumia (2001)]
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Conclusions
• The fate of the EW vacuum is a physical statement 

- Critical Higgs mass (analogously for Top mass …) is gauge independent 
- Tunnelling probability of the EW vacuum is gauge indep. as well 

• Absolute stability condition (sometimes) formulated as: 

- where       is a physical threshold (e.g. the Planck scale)

5 Discussion and conclusions

Once a calculable UV completion of the SM is specified (for instance, the SM itself extrapolated
at extremely high energies10) the fate of the electroweak vacuum, whether it is absolutely stable of
not, is a physical statement which does not depend on the choice of the gauge. This is equivalent
to say that the critical Higgs boson mass (or, in general, the critical values of the SM parameters)
distinguishing the stable/unstable phase of the SM is a gauge-independent quantity, as we formally
proved in Sect. 3.1. In this respect, it is worth to recall that the tunnelling probability of the
electoroweak vacuum is formally gauge independent as well [21, 37, 57].

On the other hand, the absolute stability condition is sometimes formulated by requiring that
the electroweak minimum, �ew, is the global minimum of the e↵ective potential over the range of
validity of the SM

Ve↵(�ew) < Ve↵(�) for � < ⇤SM , (105)

where ⇤SM is a physical threshold (e.g. the Planck scale). Above this scale new physics is supposed
to alter the shape of the e↵ective potential. However, since Ve↵(�) is gauge dependent (unless � is
an extremum), the condition in Eq. (104) is clearly gauge dependent too.
From a low-energy point of view, it is a relevant question to seek a connection between the instabil-
ity scale, ⇤, and the scale of new physics, ⇤SM. The latter being, of course, of utmost importance
for experiments. The irreducible gauge dependence of ⇤, however, makes its identification with
⇤SM ambiguous, since we are not comparing two physical quantities.

Though the gauge dependence of ⇤ amounts to less than about one order of magnitude in the
case of the Fermi gauge (cf. Fig. 4), this result cannot be used to give an absolute upper bound
on the gauge dependence of ⇤. The reason is that, on one hand, di↵erent gauge-fixing schemes
generally lead to di↵erent results (as, for instance, in the case of the background R⇠ gauge discussed
in Appendix B) and, on the other hand, we cannot say much beyond perturbation theory. Notice,
indeed, that there is no physical principle that restricts the range of the gauge-fixing parameters.
Hence, we rather stick to the conclusion that ⇤SM is a model dependent parameter which cannot
be determined by just extrapolating the SM parameters at high energies.11

Let us finally recall that, given the central values of the SM parameters and assuming that new
physics at e.g. the Planck scale does not a↵ect the tunnelling computation [11], the lifetime of the
electroweak vacuum turns out to be much longer than the age of the universe [9]. A metastable
electroweak vacuum can comply with the data and new physics is not necessarily implied. Hence,
the problem of the gauge dependence of the SM vacuum instability scale and its connection with
the scale of new physics might seem an academic one. However, this does not need to be necessarily
the case. For instance, we would like to mention the recent measurement of the primordial tensor
fluctuations in the cosmic microwave background by the BICEP2 collaboration [60] which suggests
a high inflationary scale of about 1014 GeV. As pointed out in [61–65] the Higgs field might be
subject to quantum fluctuations generated during the primordial stage of inflation which can easily
destabilize the electroweak vacuum. In particular, since the quantity ⇤ (or, more precisely, the
field value where the e↵ective potential reaches its maximum) enters in the calculation of the
electroweak vacuum survival probability, its physical identification should be addressed with care.
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10Under the assumption that Planck-scale physics decouples from the SM even at energies beyond the Planck mass
and that the Laundau pole of the hypercharge does not pose any conceptual problem.

11Even without considering the issue of the gauge dependence, the connection between ⇤ and the maximum allowed
value of the scale of new physics required to stabilize the electroweak vacuum is anyway not so direct, due to the
presence of extra parameters (e.g. couplings and masses) in any UV completion of the SM [58,59].
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5 Discussion and conclusions

Once a calculable UV completion of the SM is specified (for instance, the SM itself extrapolated
at extremely high energies10) the fate of the electroweak vacuum, whether it is absolutely stable of
not, is a physical statement which does not depend on the choice of the gauge. This is equivalent
to say that the critical Higgs boson mass (or, in general, the critical values of the SM parameters)
distinguishing the stable/unstable phase of the SM is a gauge-independent quantity, as we formally
proved in Sect. 3.1. In this respect, it is worth to recall that the tunnelling probability of the
electoroweak vacuum is formally gauge independent as well [21, 37, 57].

On the other hand, the absolute stability condition is sometimes formulated by requiring that
the electroweak minimum, �ew, is the global minimum of the e↵ective potential over the range of
validity of the SM

Ve↵(�ew) < Ve↵(�) for � < ⇤SM , (105)

where ⇤SM is a physical threshold (e.g. the Planck scale). Above this scale new physics is supposed
to alter the shape of the e↵ective potential. However, since Ve↵(�) is gauge dependent (unless � is
an extremum), the condition in Eq. (104) is clearly gauge dependent too.
From a low-energy point of view, it is a relevant question to seek a connection between the instabil-
ity scale, ⇤, and the scale of new physics, ⇤SM. The latter being, of course, of utmost importance
for experiments. The irreducible gauge dependence of ⇤, however, makes its identification with
⇤SM ambiguous, since we are not comparing two physical quantities.

Though the gauge dependence of ⇤ amounts to less than about one order of magnitude in the
case of the Fermi gauge (cf. Fig. 4), this result cannot be used to give an absolute upper bound
on the gauge dependence of ⇤. The reason is that, on one hand, di↵erent gauge-fixing schemes
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With the discovery of a Higgs-like boson at the LHC [1,2], the question of the Standard Model
(SM) vacuum stability has received a renewed attention, with several high-precision analysis on
the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability bounds are
usually obtained by requiring that the electroweak vacuum is the absolute minimum of the e↵ective
potential, at least up to some cuto↵ scale, ⇤SM, where the SM is not valid anymore and new physics
is required in order to modify the shape of the e↵ective potential.1 It would be tempting (as it is
often done) to identify the physical threshold, ⇤SM, with the SM vacuum instability scale, ⇤, which
is operatively defined by the field value at which the e↵ective potential becomes deeper than the
electroweak minimum. However, due to the gauge dependence of the e↵ective potential, ⇤ su↵ers
from an irreducible gauge ambiguity which makes its identification with ⇤SM problematic.

The gauge dependence of the e↵ective potential is known since long. Soon after the seminal
work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the e↵ective potential is
actually gauge dependent, thus raising the question of its physical significance. Since then, many
authors have dealt with this subject [26–40] and it is now a well-established practice to extract the
physical content of the e↵ective potential by means of the so-called Nielsen identities [30].
In particular, the issue of the gauge dependence of the e↵ective potential in the analysis of the

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small enough to
comply with the age of the universe.

2

- gauge-fixing scheme dependence
- no physical principle restricts the range of the gauge-fixing parameters
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