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CDM Controversies?

• Cusp-Core problem 
!

• Missing satellites problem 
!

• To-big-to-fail problem

Ref. 1306.0913



Yong Tang (KIAS)                       Self-Interacting DM                                      Planck 2014

Cusp vs. Core

Fig. 1. The cusp-core problem. (Left) An optical image of the galaxy F568-3 (small inset, from the Sloan Digital Sky Survey) is superposed on the the dark matter
distribution from the “Via Lactea” cosmological simulation of a Milky Way-mass cold dark matter halo (Diemand et al. 2007). In the simulation image, intensity encodes the
square of the dark matter density, which is proportional to annihilation rate and highlights low mass substructure. (Right) The measured rotation curve of F568-3 (points)
compared to model fits assuming a cored dark matter halo (blue solid curve) or a cuspy dark matter halo with an NFW profile (red dashed curve, concentration c = 9.2,
V200 = 110 km s�1). The dotted green curve shows the contribution of baryons (stars+gas) to the rotation curve, which is included in both model fits. An NFW halo
profile overpredicts the rotation speed in the inner few kpc. Note that the rotation curve is measured over roughly the scale of the 40 kpc inset in the left panel.

typical for galaxy mass halos. When normalized to match the
observed rotation at large radii, the NFW halo overpredicts
the rotation speed in the inner few kpc, by a factor of two or
more.

Early theoretical discussions of the cusp-core problem de-
voted considerable attention to the predicted central slope of
the density profiles and to the e↵ects of finite numerical reso-
lution and cosmological parameter choices on the simulation
predictions (see Ludlow et al. 2013 for a recent, state-of-the-
art discussion). However, the details of the profile shape are
not essential to the conflict; the basic problem is that CDM
predicts too much dark matter in the central few kpc of typical
galaxies, and the tension is evident at scales where vc(r) has
risen to ⇠ 1/2 of its asymptotic value (see, e.g., Alam, Bul-
lock, & Weinberg 2002; Kuzio de Naray & Spekkens 2011).
On the observational side, the most severe discrepancies be-
tween predicted and observed rotation curves arise for fairly
small galaxies, and early discussions focused on whether beam
smearing or non-circular motions could artificially suppress
the measured vc(r) at small radii. However, despite uncer-
tainties in individual cases, improvements in the observations,
sample sizes, and modeling have led to a clear overall picture:
a majority of galaxy rotation curves are better fit with cored
dark matter profiles than with NFW-like dark matter profiles,
and some well observed galaxies cannot be fit with NFW-like
profiles, even when one allows halo concentrations at the low
end of the theoretically predicted distribution and accounts for
uncertainties in modeling the baryon component (e.g., Kuzio
de Naray et al. 2008). Resolving the cusp-core problem there-
fore requires modifying the halo profiles of typical spiral galax-
ies away from the profiles that N-body simulations predict for
collisionless CDM.

Figure 2 illustrates the “missing satellite” problem. The
left panel shows the projected dark matter density distribu-
tion of a 1012M

�

CDM halo formed in a cosmological N-body
simulation. Because CDM preserves primordial fluctuations
down to very small scales, halos today are filled with enormous
numbers of subhalos that collapse at early times and preserve
their identities after falling into larger systems. Prior to 2000,
there were only nine dwarf satellite galaxies known within the

⇠ 250 kpc virial radius of the Milky Way halo (illustrated
in the right panel), with the smallest having stellar velocity
dispersions ⇠ 10 km s�1. Klypin et al. (1999) and Moore et
al. (1999b) predicted a factor ⇠ 5 � 20 more subhalos above
a corresponding velocity threshold in their simulated Milky
Way halos. Establishing the “correspondence” between satel-
lite stellar dynamics and subhalo properties is a key technical
point (Stoehr et al. 2002), which we will return to below, but
a prima facie comparison suggests that the predicted satellite
population far exceeds the observed one.

Fortunately (or perhaps unfortunately), the missing satel-
lite problem seems like it could be solved fairly easily by
baryonic physics. In particular, the velocity threshold at
which subhalo and dwarf satellite counts diverge is close to
the ⇠ 30 km s�1 value at which heating of intergalactic gas
by the ultraviolet photoionizing background should suppress
gas accretion onto halos, which could plausibly cause these
halos to remain dark (Bullock, Kravtsov, & Weinberg 2000;
Benson et al. 2002; Somerville 2002). Alternatively, super-
novae and stellar winds from the first generation of stars could
drive remaining gas out of the shallow potential wells of these
low mass halos. Complicating the situation, searches using
the Sloan Digital Sky Survey have discovered another ⇠ 15
“ultra-faint” satellites with luminosities of only 103 � 105L

�

(e.g., Willman et al. 2005; Belokurov et al. 2007). The high-
latitude SDSS imaging covered only ⇠ 20% of the sky, and
many of the newly discovered dwarfs are so faint that they
could only be seen to 50-100 kpc (Koposov et al. 2008; Walsh
et al. 2009), so extrapolating to the full volume within the
Milky Way virial radius suggests a population of several hun-
dred faint dwarf satellites (Tollerud et al. 2008). Estimates
from stellar dynamics imply that the mass of dark matter in
the central 0.3 kpc of the host subhalos is M0.3 ⇡ 107M

�

across an enormous range of luminosities, L ⇠ 103 � 107L
�

(encompassing the “classical” dwarf spheroidals as well as the
SDSS dwarfs), which suggests that the mapping between halo
mass and luminosity becomes highly stochastic near this mass
threshold (Strigari et al. 2008). The luminosity function of
the faint and ultra-faint dwarfs can be explained by semi-
analytic models invoking photoionization and stellar feedback
(e.g., Koposov et al. 2009; Macciò et al. 2009), though the e�-
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Fig. 4. E↵ect of self-interacting dark matter (SIDM) on halo structure, from simulations by Rocha et al. (2013). The left panel shows a Milky Way mass CDM halo,
and the middle panel shows the same halo from an SIDM simulation with cross-section of 1 cm2 g�1. The structure and substructure are similar, but the SIDM halo is
rounder and less dense in the center. The right panel compares the density profiles of a CDM and SIDM halo, showing the core produced by elastic scattering. This halo has
M = 4.2⇥ 1013M

�

, but similar behavior is found at other halo masses.

WDM; recent examples include Polisensky & Ricotti (2011),
Anderhalden et al. (2012), Lovell et al. (2012), Macciò et al.
(2012), Schneider et al. (2012), and Angulo et al. (2013).

Warm dark matter is a “just-so” solution to CDM’s prob-
lems, requiring a particle mass (or free-streaming velocity)
that is tuned to the particular scale of dwarf galaxy halos.
However, the more serious challenge to WDM is observational,
for two reasons. First, WDM does too good a job in elim-
inating power on small scales; for a thermal relic of mass
m = 2 keV, there are too few subhalos in the Milky Way to
host the known satellite galaxies (Polisensky & Ricotti 2011).
It also appears in conflict with observations of strong-lens sys-
tems, which show evidence for a significant subhalo fraction
as well as the existence of small (108M

�

) subhalos (Dalal &
Kochanek 2002; Dobler & Keeton 2006; Vegetti et al. 2010a,b,
2012; Fadely & Keeton 2011, 2012). Second, suppressing pri-
mordial fluctuations on small scales alters the predicted struc-
ture of Lyman-↵ forest absorption towards quasars at high
redshift, where these scales are still in the quasi-linear regime
(Narayanan et al. 2000). Recent studies of the Lyman-↵ forest
set a lower limit on the dark matter particle mass of several
keV, high enough that the dark matter is e↵ectively “cold”
from the point of view of the cusp-core problem (Seljak et
al. 2006; Viel et al. 2008; but see Abazajian 2006 for a coun-
terclaim of a lower minimum particle mass). Even setting
these problems aside, it appears that WDM on its own does
not fix the shape of rotation curves across the full range of
galaxy masses where conflict with CDM is observed (Kuzio
de Naray et al. 2010). While some uncertainties in the nu-
merical simulations and observational data remain, it appears
that WDM cannot solve the cusp-core and missing satellite
problems while remaining consistent with Lyman-↵ forest and
substructure observations.

An alternative idea, made popular by Spergel & Stein-
hardt (2000), is that cold dark matter has weak interactions
with baryons but strong self-interactions. The required scat-
tering cross-section is roughly (m/g)�1 cm2 where m is the
particle mass; note that 1 cm2 g�1 ⇡ 1 barnGeV�1 is approx-
imately a nuclear-scale cross section. In this case, elastic scat-
tering in the dense central regions of halos is frequent enough
to redistribute energy and angular momentum among par-
ticles, creating an isothermal, round core of approximately
constant density (Burkert 2000). Some early studies suggested
that this idea was ruled out by gravitational lensing (Miralda-
Escudé 2002) or by catastrophic gravitational core collapse
found in a simulation of an isolated halo (Kochanek & White

2000), but recent numerical studies show that these concerns
are not borne out in fully cosmological simulations. Instead,
simulations show that there is a viable window of mass and
cross-section where self-interacting dark matter (SIDM) can
produce cored dark matter profiles and remain consistent with
observational constraints (Rocha et al. 2013; Peter et al.
2013).

Figure 4, based on Rocha et al. (2013), compares the struc-
ture and density profiles of halos formed from the same initial
conditions with collisionless CDM and SIDM. Elastic scatter-
ing in the central regions, where an average particle expe-
riences a few collisions per Hubble time, flattens the density
cusp and reduces triaxiality. The scattering mechanism would
operate across a wide range of halo masses, allowing SIDM to
address both the rotation curves of Milky Way-like galaxies
and the central densities of dwarf satellites. Because they are
more weakly bound, SIDM subhalos are more easily subject
to tidal disruption than CDM subhalos. However, the sup-
pression of the low-mass subhalo count is not significant for
allowed cross sections except in the innermost region of the
host halo (Vogelsberger et al. 2012; Rocha et al 2013). Thus,
SIDM can solve the cusp-core problem while leaving enough
subhalos to host Milky Way satellites, unlike WDM.

The prospects for SIDM appear much more hopeful than
for WDM (though for a summary of pro-WDM views see Bier-
mann et al. 2013). Velocity-independent cross sections in the
range ⇠ 0.1�0.5 cm2 g�1 create cores that are approximately
the right size for Milky Way dwarf galaxies, spiral galaxies,
and galaxy clusters (Newman et al. 2013a,b; Rocha et al.
2013) while leaving halos triaxial enough to match observa-
tions (Peter et al. 2013). Cross sections in this range are also
consistent with observations of merging galaxy clusters (Clowe
et al. 2006; Randall et al. 2008; Dawson et al. 2012). More-
over, particle model builders have recently focused attention
on new classes of “hidden sector” models that generically pro-
duce SIDM particle candidates, although in general the elas-
tic scattering cross section has a strong velocity dependence
(Ackerman et al. 2009; Buckley 2010; Feng et al. 2010; Tulin
et al. 2013a,b). For these models, strong self-interactions may
only be present in a narrow range of halo mass, leaving halos
on other scales e↵ectively collisionless. Observationally, the
goal is to either rule out or find evidence for SIDM cross sec-
tions � > 0.1 cm2 g�1, as for smaller cross-sections the halo
phenomenology is likely to be indistinguishable from CDM.

There are alternative dark matter physics mechanisms
that could reduce the central densities of halos, including par-
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“missing satellites” problem

• Projected dark matter 
distribution of a 
simulated CDM halo. 

• The numerous small 
subhalos far exceed the 
number of known Milky 
Way satellites. 

• Circles mark the nine 
most massive subhalos.

Fig. 2. The missing satellite and “too big to fail” problems. (Left) Projected dark matter distribution (600 kpc on a side) of a simulated, 1012M
�

CDM halo
(Garrison-Kimmel, Boylan-Kolchin, & Bullock, in preparation). As in Figure 1, the numerous small subhalos far exceed the number of known Milky Way satellites. Circles mark
the nine most massive subhalos. (Right) Spatial distribution of the “classical” satellites of the Milky Way. The central densities of the subhalos in the left panel are too high
to host the dwarf satellites in the right panel, predicting stellar velocity dispersions higher than observed. The diameter of the outer sphere in the right panel is 300 kpc; relative
to the simulation prediction (and to the Andromeda galaxy) the Milky Way’s satellite system is unusually centrally concentrated (Yniguez et al. 2013).

ciency of converting baryons to stars remains surprisingly low
(⇠ 0.1%� 1%) well above the photoionization threshold, and
it is unclear which if any of the ultra-faint dwarfs are “fossils”
from before the epoch of reionization (Bovill & Ricotti 2009).
Despite the gaps in understanding, it seems reasonable for now
to regard the relation between low mass subhalos and ultra-
faint dwarfs as a puzzle of galaxy formation physics rather
than a contradiction of CDM.

Instead, attention has focused recently on the most lumi-
nous satellites. Circles in Figure 2 mark the nine most mas-
sive subhalos in the simulation, which one would expect to
host galaxies like the Milky Way’s “classical” dwarf satellites.
However, the mass in the central regions of these subhalos
exceeds the mass inferred from stellar dynamics of observed
dwarfs, by a factor ⇠ 5 (Boylan-Kolchin et al. 2011, 2012;
Springel et al. 2008; Parry et al. 2012). While it is pos-
sible in principle that these massive subhalos are dark and
that the observed dwarfs reside in less massive hosts, this
outcome seems physically unlikely; in the spirit of the times,
Boylan-Kolchin et al. (2011) titled this conflict “too big to
fail.” The degree of discrepancy varies with the particular re-
alization of halo substructure and with the mass of the main
halo, but even for a halo mass at the low end of estimates
for the Milky Way the discrepancy appears too large to be a
statistical fluke, and a similar conflict is found in the satellite
system of the Andromeda galaxy (Tollerud et al. 2012). While
“missing satellites” in low mass subhalos may be explained by
baryonic e↵ects, the “too big to fail” problem arises in more
massive systems whose gravitational potential is dominated
by dark matter. In its present form, therefore, the satellite
puzzle looks much like the cusp-core problem: numerical sim-
ulations of CDM structure formation predict too much mass
in the central regions of halos and subhalos. Indeed, Walker
& Peñarrubia (2011), Amorisco et al. (2013), and others have
reported evidence that the Milky Way satellites Fornax and
Sculptor have cored density profiles.

Solutions in Baryonic Physics?
When the cusp-core problem was first identified, the conven-
tional lore was that including baryonic physics would only
exacerbate the problem by adiabatically contracting the dark
matter density distribution (Blumenthal et al. 1986; Flores
& Primack 1994). Navarro, Eke, & Frenk (1996) proposed
a scenario, which seemed extreme at the time, for producing
a cored dark matter distribution: dissipative baryons draw
in the dark matter orbits adiabatically by slowly deepening
the gravitational potential, then release them suddenly when
the supernova feedback of a vigorous starburst blows out a
substantial fraction of the baryonic material, leaving the dark
matter halo less concentrated than the one that would have
formed in the absence of baryons. Since then, hydrodynamic
simulations have greatly improved in numerical resolution and
in the sophistication with which they model star formation
and supernova feedback. With the combination of a high gas
density threshold for star formation and e�cient feedback,
simulations successfully reproduce the observed stellar and
cold gas fractions of field galaxies. The ejection of low angular
momentum gas by feedback plays a critical role in suppressing
the formation of stellar bulges in dwarf galaxies (Governato et
al. 2010), another long-standing problem in early simulations
of galaxy formation. The episodic gas outflows also produce
rapid fluctuations of the gravitational potential, in contrast to
the steady growth assumed in adiabatic contraction models.

Figure 3, based on Governato et al. (2012), illustrates the
impact of this episodic feedback on the dark matter density
profile. In the left panel, the upper dot-dashed curve shows
the final halo profile of an N-body simulation run with grav-
ity and dark matter only. Other curves show the evolution of
the dark matter density profile in a hydrodynamic simulation
with star formation and feedback, from the same initial con-
ditions. Over time, the central dark matter density drops,
and the cuspy profile is transformed to one with a nearly
constant density core (lower solid curve). Pontzen & Gov-
ernato (2012) present an analytic model that accurately de-
scribes this transformation (and its dependence on simulation
assumptions); essentially, the rapid fluctuations in the central
potential pump energy into the dark matter particle orbits, so
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 “too-big-to-fail” problem

The central densities of the subhalos in the left panel are too high to host the dwarf satellites in   
the right panel, predicting stellar velocity dispersions higher than observed.	


Fig. 2. The missing satellite and “too big to fail” problems. (Left) Projected dark matter distribution (600 kpc on a side) of a simulated, 1012M
�

CDM halo
(Garrison-Kimmel, Boylan-Kolchin, & Bullock, in preparation). As in Figure 1, the numerous small subhalos far exceed the number of known Milky Way satellites. Circles mark
the nine most massive subhalos. (Right) Spatial distribution of the “classical” satellites of the Milky Way. The central densities of the subhalos in the left panel are too high
to host the dwarf satellites in the right panel, predicting stellar velocity dispersions higher than observed. The diameter of the outer sphere in the right panel is 300 kpc; relative
to the simulation prediction (and to the Andromeda galaxy) the Milky Way’s satellite system is unusually centrally concentrated (Yniguez et al. 2013).

ciency of converting baryons to stars remains surprisingly low
(⇠ 0.1%� 1%) well above the photoionization threshold, and
it is unclear which if any of the ultra-faint dwarfs are “fossils”
from before the epoch of reionization (Bovill & Ricotti 2009).
Despite the gaps in understanding, it seems reasonable for now
to regard the relation between low mass subhalos and ultra-
faint dwarfs as a puzzle of galaxy formation physics rather
than a contradiction of CDM.

Instead, attention has focused recently on the most lumi-
nous satellites. Circles in Figure 2 mark the nine most mas-
sive subhalos in the simulation, which one would expect to
host galaxies like the Milky Way’s “classical” dwarf satellites.
However, the mass in the central regions of these subhalos
exceeds the mass inferred from stellar dynamics of observed
dwarfs, by a factor ⇠ 5 (Boylan-Kolchin et al. 2011, 2012;
Springel et al. 2008; Parry et al. 2012). While it is pos-
sible in principle that these massive subhalos are dark and
that the observed dwarfs reside in less massive hosts, this
outcome seems physically unlikely; in the spirit of the times,
Boylan-Kolchin et al. (2011) titled this conflict “too big to
fail.” The degree of discrepancy varies with the particular re-
alization of halo substructure and with the mass of the main
halo, but even for a halo mass at the low end of estimates
for the Milky Way the discrepancy appears too large to be a
statistical fluke, and a similar conflict is found in the satellite
system of the Andromeda galaxy (Tollerud et al. 2012). While
“missing satellites” in low mass subhalos may be explained by
baryonic e↵ects, the “too big to fail” problem arises in more
massive systems whose gravitational potential is dominated
by dark matter. In its present form, therefore, the satellite
puzzle looks much like the cusp-core problem: numerical sim-
ulations of CDM structure formation predict too much mass
in the central regions of halos and subhalos. Indeed, Walker
& Peñarrubia (2011), Amorisco et al. (2013), and others have
reported evidence that the Milky Way satellites Fornax and
Sculptor have cored density profiles.

Solutions in Baryonic Physics?
When the cusp-core problem was first identified, the conven-
tional lore was that including baryonic physics would only
exacerbate the problem by adiabatically contracting the dark
matter density distribution (Blumenthal et al. 1986; Flores
& Primack 1994). Navarro, Eke, & Frenk (1996) proposed
a scenario, which seemed extreme at the time, for producing
a cored dark matter distribution: dissipative baryons draw
in the dark matter orbits adiabatically by slowly deepening
the gravitational potential, then release them suddenly when
the supernova feedback of a vigorous starburst blows out a
substantial fraction of the baryonic material, leaving the dark
matter halo less concentrated than the one that would have
formed in the absence of baryons. Since then, hydrodynamic
simulations have greatly improved in numerical resolution and
in the sophistication with which they model star formation
and supernova feedback. With the combination of a high gas
density threshold for star formation and e�cient feedback,
simulations successfully reproduce the observed stellar and
cold gas fractions of field galaxies. The ejection of low angular
momentum gas by feedback plays a critical role in suppressing
the formation of stellar bulges in dwarf galaxies (Governato et
al. 2010), another long-standing problem in early simulations
of galaxy formation. The episodic gas outflows also produce
rapid fluctuations of the gravitational potential, in contrast to
the steady growth assumed in adiabatic contraction models.

Figure 3, based on Governato et al. (2012), illustrates the
impact of this episodic feedback on the dark matter density
profile. In the left panel, the upper dot-dashed curve shows
the final halo profile of an N-body simulation run with grav-
ity and dark matter only. Other curves show the evolution of
the dark matter density profile in a hydrodynamic simulation
with star formation and feedback, from the same initial con-
ditions. Over time, the central dark matter density drops,
and the cuspy profile is transformed to one with a nearly
constant density core (lower solid curve). Pontzen & Gov-
ernato (2012) present an analytic model that accurately de-
scribes this transformation (and its dependence on simulation
assumptions); essentially, the rapid fluctuations in the central
potential pump energy into the dark matter particle orbits, so
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Possible solutions

• Baryonic physics:  
   gas cooling, star formation,  
   supernova feedback,… 
!
• Dark Matter: 
   warm dark matter, 
   Self-Interacting DM,

Spergel et al, Sigurdson et al, 
Boehm et al, Kaplinghat et al, 
Loeb et al, Tulin et al,  
van de Aarseen et al, 
….
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What is SIDM?
• DM-DM scattering cross section is around  
!
!

• It can flatten the halo centre, solving the 
“cusp-core” and “too-big-to-fail” problems. 

• Interaction with relativistic particles can 
induce a cut-off in the matter power 
spectrum by collisional damping, solving 
the “missing satellites” problem.

�

MX
⇠ cm2/g ⇠ barn/GeV
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How?

• MeV mediator can provide the right elastic 
scattering cross section for TeV dark matter,

χ

χ̄

χ

χ̄

V

Fig. 4. E↵ect of self-interacting dark matter (SIDM) on halo structure, from simulations by Rocha et al. (2013). The left panel shows a Milky Way mass CDM halo,
and the middle panel shows the same halo from an SIDM simulation with cross-section of 1 cm2 g�1. The structure and substructure are similar, but the SIDM halo is
rounder and less dense in the center. The right panel compares the density profiles of a CDM and SIDM halo, showing the core produced by elastic scattering. This halo has
M = 4.2⇥ 1013M

�

, but similar behavior is found at other halo masses.

WDM; recent examples include Polisensky & Ricotti (2011),
Anderhalden et al. (2012), Lovell et al. (2012), Macciò et al.
(2012), Schneider et al. (2012), and Angulo et al. (2013).

Warm dark matter is a “just-so” solution to CDM’s prob-
lems, requiring a particle mass (or free-streaming velocity)
that is tuned to the particular scale of dwarf galaxy halos.
However, the more serious challenge to WDM is observational,
for two reasons. First, WDM does too good a job in elim-
inating power on small scales; for a thermal relic of mass
m = 2 keV, there are too few subhalos in the Milky Way to
host the known satellite galaxies (Polisensky & Ricotti 2011).
It also appears in conflict with observations of strong-lens sys-
tems, which show evidence for a significant subhalo fraction
as well as the existence of small (108M

�

) subhalos (Dalal &
Kochanek 2002; Dobler & Keeton 2006; Vegetti et al. 2010a,b,
2012; Fadely & Keeton 2011, 2012). Second, suppressing pri-
mordial fluctuations on small scales alters the predicted struc-
ture of Lyman-↵ forest absorption towards quasars at high
redshift, where these scales are still in the quasi-linear regime
(Narayanan et al. 2000). Recent studies of the Lyman-↵ forest
set a lower limit on the dark matter particle mass of several
keV, high enough that the dark matter is e↵ectively “cold”
from the point of view of the cusp-core problem (Seljak et
al. 2006; Viel et al. 2008; but see Abazajian 2006 for a coun-
terclaim of a lower minimum particle mass). Even setting
these problems aside, it appears that WDM on its own does
not fix the shape of rotation curves across the full range of
galaxy masses where conflict with CDM is observed (Kuzio
de Naray et al. 2010). While some uncertainties in the nu-
merical simulations and observational data remain, it appears
that WDM cannot solve the cusp-core and missing satellite
problems while remaining consistent with Lyman-↵ forest and
substructure observations.

An alternative idea, made popular by Spergel & Stein-
hardt (2000), is that cold dark matter has weak interactions
with baryons but strong self-interactions. The required scat-
tering cross-section is roughly (m/g)�1 cm2 where m is the
particle mass; note that 1 cm2 g�1 ⇡ 1 barnGeV�1 is approx-
imately a nuclear-scale cross section. In this case, elastic scat-
tering in the dense central regions of halos is frequent enough
to redistribute energy and angular momentum among par-
ticles, creating an isothermal, round core of approximately
constant density (Burkert 2000). Some early studies suggested
that this idea was ruled out by gravitational lensing (Miralda-
Escudé 2002) or by catastrophic gravitational core collapse
found in a simulation of an isolated halo (Kochanek & White

2000), but recent numerical studies show that these concerns
are not borne out in fully cosmological simulations. Instead,
simulations show that there is a viable window of mass and
cross-section where self-interacting dark matter (SIDM) can
produce cored dark matter profiles and remain consistent with
observational constraints (Rocha et al. 2013; Peter et al.
2013).

Figure 4, based on Rocha et al. (2013), compares the struc-
ture and density profiles of halos formed from the same initial
conditions with collisionless CDM and SIDM. Elastic scatter-
ing in the central regions, where an average particle expe-
riences a few collisions per Hubble time, flattens the density
cusp and reduces triaxiality. The scattering mechanism would
operate across a wide range of halo masses, allowing SIDM to
address both the rotation curves of Milky Way-like galaxies
and the central densities of dwarf satellites. Because they are
more weakly bound, SIDM subhalos are more easily subject
to tidal disruption than CDM subhalos. However, the sup-
pression of the low-mass subhalo count is not significant for
allowed cross sections except in the innermost region of the
host halo (Vogelsberger et al. 2012; Rocha et al 2013). Thus,
SIDM can solve the cusp-core problem while leaving enough
subhalos to host Milky Way satellites, unlike WDM.

The prospects for SIDM appear much more hopeful than
for WDM (though for a summary of pro-WDM views see Bier-
mann et al. 2013). Velocity-independent cross sections in the
range ⇠ 0.1�0.5 cm2 g�1 create cores that are approximately
the right size for Milky Way dwarf galaxies, spiral galaxies,
and galaxy clusters (Newman et al. 2013a,b; Rocha et al.
2013) while leaving halos triaxial enough to match observa-
tions (Peter et al. 2013). Cross sections in this range are also
consistent with observations of merging galaxy clusters (Clowe
et al. 2006; Randall et al. 2008; Dawson et al. 2012). More-
over, particle model builders have recently focused attention
on new classes of “hidden sector” models that generically pro-
duce SIDM particle candidates, although in general the elas-
tic scattering cross section has a strong velocity dependence
(Ackerman et al. 2009; Buckley 2010; Feng et al. 2010; Tulin
et al. 2013a,b). For these models, strong self-interactions may
only be present in a narrow range of halo mass, leaving halos
on other scales e↵ectively collisionless. Observationally, the
goal is to either rule out or find evidence for SIDM cross sec-
tions � > 0.1 cm2 g�1, as for smaller cross-sections the halo
phenomenology is likely to be indistinguishable from CDM.

There are alternative dark matter physics mechanisms
that could reduce the central densities of halos, including par-
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How?
• MeV mediator can provide the right elastic 

scattering cross section for TeV dark matter,

χ

χ̄

χ

χ̄

V

X X

5

if it is constant and

sDM�n,0 . 10�35 (mDM/GeV) cm2 , (8)

if it is proportional to the temperature squared.
Forthcoming polarisation data from e.g. Planck [4],

ACTpol [48], POLARBEAR [49] and SPIDER [50] will
improve these results and could provide us with a powerful
tool to study DM interactions in the future.

B. Large-Scale Structure

The effects of introducing DM–neutrino interactions on the
matter power spectrum, P(k), are shown in Fig. 2 (where
for simplicity, we assume that the cross section is constant).
We obtain a series of damped oscillations, which suppress
power on small scales (see Ref. [10]). For the cross sections
of interest, significant damping effects are restricted to the
non-linear regime (for which k & 0.2 h Mpc�1).

In general, the reduction of small-scale power for a DM
candidate is described by a transfer function, T (k), defined by

P(k) = T 2(k) PCDM(k) , (9)

where PCDM(k) is the equivalent matter power spectrum for
CDM.

For a non-interacting warm DM (WDM) particle, the
transfer function can be approximated by the fitting
formula [51]:

T (k) = [1+(ak)2n]�5/n , (10)

where

a =
0.049

h Mpc�1

⇣mWDM

keV

⌘�1.11
✓

WDM

0.25

◆0.11✓ h
0.7

◆1.22
, (11)

n ' 1.12 and mWDM is the mass of the warm thermal relic [52].
From Fig. 2, one can see that cosmological models

including DM–neutrino interactions can provide an initial
reduction of small-scale power in a similar manner to the
exponential cut-off of WDM. The presence of damped
oscillations is unimportant for setting limits since we are only
interested in the cut-off of the spectrum and the power is
already significantly reduced by the first oscillation. However,
we note that this difference could allow one to distinguish the
two models in high-resolution N-body simulations [53].

Using an analysis of the Lyman-a flux from the HIRES [54]
and MIKE spectrographs [55], Ref. [33] obtained a bound
on the free-streaming scale of a warm thermal relic,
corresponding to a particle mass of mWDM ' 3.3 keV (or
equivalently, a ' 0.012). This constraint is represented by
the solid grey curve in Fig. 2.

By comparing models of DM–neutrino interactions with
WDM, we can effectively rule out cross sections in
which the collisional damping scale is larger than the
maximally-allowed WDM free-streaming scale. Taking into
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P
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 M

pc
)3

k (h Mpc-1)

Lyman-_
u = 10-5

u = 10-6

u = 10-7

u = 10-8

u = 0

FIG. 2: The impact of DM–neutrino interactions on the matter power
spectrum, where u ⌘ [sDM�n/sTh] [mDM/100 GeV]�1 (such that
u = 0 corresponds to no coupling). We take sDM�n to be constant
and use the ‘Planck + WP’ best-fit parameters from Ref. [32]. The
solid grey curve represents the most recent constraint on warm DM
models from the Lyman-a forest [33]. The new coupling produces
(power-law) damped oscillations, reducing the number of small-scale
structures with respect to vanilla LCDM [10].

account the freedom from the other cosmological parameters,
we obtain the conservative upper bounds:

sDM�n . 10�33 (mDM/GeV) cm2 , (12)

if the cross section is constant and

sDM�n,0 . 10�45 (mDM/GeV) cm2 , (13)

if it scales as the temperature squared.
These limits are significantly stronger than those obtained

from the CMB analysis in Sec. III A and will improve
further with forthcoming data from LSS surveys such as
SDSS-III [56] and Euclid [57]. However, CMB constraints
are important to compare to as they do not depend on the
non-linear evolution of the matter fluctuations.

We can now fix the cross section to be the maximum value
allowed by these constraints and redo our CMB analysis.
Applying Eq. (12) for a constant cross section, we obtain the
bounds on the cosmological parameters shown in Table II and
illustrated in Fig. 5. These results are similar to the case of no
interaction with Neff free to vary, corresponding to the second
line in Table I (especially after correcting the central value
of 100 h by 0.6, as explained in Footnote 6). The reason is
that the cross section imposed by the Lyman-a data is small
enough to not significantly modify the CMB spectrum.

Finally, we note that if more than one species were
responsible for the observed DM relic density (which is
the case that we consider here), larger values of the elastic
scattering cross section would be allowed.

Wilkinson et al, 1401.7597
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Figure 2: In the yellow area, the CDM self-interaction is
strong enough to flatten density cusps in the inner parts of
(dwarf) galaxies [30] and likely also solves the too-big-to-fail
problem (as explicitly demonstrated in N -body simulations
for parameter values corresponding to the crosses [31]). The
dark area is excluded by astrophysics [29, 30, 55, 56]. The
blue band addresses the missing satellite problem [33] and

scales as mV / X1/2
⌫
R

(TN1/T )
3/2
kd , c.f. Eq. (8). Here, we show

for reference the case of X⌫
R

= 0.2 and (TN1/T )
4
kd = 0.46.

grees of freedom (d.o.f.) determining the entropy density
of the sector in thermal equilibrium with the species i.
The non-standard contribution to the radiation density
is then given by

�Ne↵(T ) =
T 4
N1

T 4
⌫

=

✓
g⇤,⌫
g⇤,N1

◆ 4
3

�����
T

✓
g⇤,N1

g⇤,⌫

◆ 4
3

�����
T

dpl
x

. (5)

The maximal possible value of this quantity at the onset
of big bang nucleosynthesis (BBN), at T ⇠ 1MeV, is then
obtained if all new particles but the light sterile neutrino,
N1, have become non-relativistic by then. This results in

�Ne↵|max
bbn ' ⇥

58.4/g⇤,⌫(T
dpl
x

)
⇤ 4

3 , (6)

well within bounds from BBN [52–54] for T dpl
x

& 1GeV.
Self-interacting CDM.— At high temperatures, the

DM particles are kept in chemical equilibrium via �� $
V V (for unit sterile neutrino charges, X

⌫

R

⇠ 1, also the
annihilation into ⌫

R

⌫
R

, h
x

h
x

and ⇠⇤⇠ via a virtual V be-
comes important). For TeV-scale DM the number density
freezes out at su�ciently early times (T fo

�

⇠ m
�

/25) to
still have T

V

= T . Assuming for simplicity X
⌫

R

⌧ 1, the
CDM relic density then becomes

Øcdmh
2 = 2Ø

�

h2 ⇠ 0.11

✓
0.67

g
X

◆4 ⇣ m
�

TeV

⌘2

(7)

up to O (1) corrections due to the Sommerfeld e↵ect [57],
which we fully take into account [33]. This fixes g

X

for a
given m

�

throughout this work.
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Figure 3: Sterile neutrino mass mN1 vs. late-time additional
relativistic d.o.f. �Ne↵|cmb and SM d.o.f. at decoupling of the
U(1)X sector, cf. Eq. (6). Shaded areas correspond, at 1�
and 2� respectively, to the HDM signal [36] and values of
mN1 favored by the neutrino anomalies [64, 65]. Dashed lines
indicate the maximal value of �Ne↵|cmb compatible with a
CDM mass of, from right to left, m� = 100, 500, 1000GeV.
Parameter values to the left of the solid line are not achievable
in the minimal scenario studied here.

Kinetic decoupling [58] of � happens much later and
is determined by the elastic scattering rate for �N1 $
�N1. For a thermal distribution of sterile neutrinos, the
decoupling temperature is given by [33]

T kd
�

' 62 eV

X
1
2
⌫

R

g
X

✓
T

T
N1

◆ 3
2

kd

⇣ m
�

TeV

⌘ 1
4
⇣ m

V

MeV

⌘
, (8)

which translates into a cuto↵ in the power spectrum
of matter density perturbations at Mcut ⇠ 1.7 ⇥
108(T kd

�

/keV)�3M�. We note that the light mass eigen-
states ⌫

i

also acquire a U(1)
X

charge from their ⌫c
R

com-
ponent; this will further lower T kd

�

if sin ✓ & (T
N1/T⌫

)3/2.
After structure formation, the U(1)

X

-induced Yukawa
potential produces galaxy cores that match the observed
velocity profiles of massive MW satellites, solving cusp
vs. core [28, 30] and too big to fail [31], while avoiding
constraints on DM self-interactions on larger scales [30].
At the same time, the late kinetic decoupling addresses
the missing satellites by suppressing the matter power
spectrum at dwarf galaxy scales [33]. In Fig. 2, we show
the desired parameter space for m

V

and m
�

(based on
Ref. [33], but using an improved parameterization [59] of
the Yukawa scattering cross section [28, 60–63]).
The HDM component.— We will now address the

question whether the N1 population in our model can ac-
count for the cosmologically preferred HDM component
[35–38]. In the absence of any significant additional N1

production mechanism, see the discussion further down,
we simply have

�Ne↵|cmb = �Ne↵|max
bbn . (9)

Bringmann et al,1312.4947
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Model 1—νΛMDM

2

then calculate the e↵ective number of additional neutri-
nos�N cmb

e↵ and show it can give a value that is consistent
with all the observations within 1� level. Finally we give
a summary.

MODEL FOR CDM AND STERILE NEUTRINO

In addition to 2 right-handed gauge singlet Ni(i =
1, 2), we add to the SM a dark sector with U(1)X gauge

symmetry, X̂,�X , and �. All the new fields are SM
gauge singlets and �X and  are assigned with equal
U(1)X charges QX normalized to 1. Then the most gen-
eral gauge invariant renormalizable Lagrangian is given
by

L =LSM + N̄ii/@Ni �
✓
1

2
mR

ijN̄
c
i Nj + y↵iL̄↵HNi + h.c

◆
� 1

4
X̂µ⌫X̂

µ⌫ � 1

2
sin ✏X̂µ⌫B̂

µ⌫

+ �̄
�
i /D �m�

�
�+  ̄

�
i /D �m 

�
 +D†

µ�
†
XDµ�X �

⇣
fi�

†
XN̄ c

i  + gi�X  ̄Ni + h.c
⌘

� ��

"
�†X�X � v2�

2

#2

� ��H

"
�†X�X � v2�

2

# 
H†H � v2h

2

�
, (2)

where Ni is the right-handed gauge singlet neutrino, �X
is the dark Higgs field to break U(1)X , � is the fermionic
CDM and  is a Dirac fermion in the dark sector. 1 The
local gauge symmetry is broken by the following vacuum
configurations:

hHi = 1p
2

✓
0
vh

◆
, h�Xi = v�p

2
, (3)

where vh ' 246GeV and v� ⇠ O(MeV) for our interest.
There will be mixings among various fields after the

spontaneous gauge symmetry breaking. The gauge ki-
netic mixing term results in tiny mixing among the phys-
ical gauge fields, Aµ, Zµ and Xµ. Also there is a mixing
between Higgs fields h and � with

H ! vh + hp
2

and �X ! v� + �p
2

.

Two scalar excitations h and � can be expressed in terms
of mass eigenstates, H1 and H2, as

h = H1 cos↵�H2 sin↵, (4)

� = H1 sin↵+H2 cos↵, (5)

with a mixing angle ↵. Because of the Higgs portal in-
teraction (��H term) and the additional scalar �, elec-
troweak vacuum could be stable up to Planck scale with-
out additional new physics beyond the particle contents
presented in Eq. (2) (see Refs. [52] for example).

1 We could also add one very heavy N in the lagrangian for lepto-
genesis [51], which will not a↵ect our discussions in the following.

A novel feature of the model in this paper is that
there can be mixing among three active neutrinos ⌫↵,
sterile neutrinos Ni and  due to y↵iL̄↵HNi, fi�

†
XN̄i 

and gi�X  ̄Ni after the symmetry breaking. In order to
correctly explain the active neutrino oscillation data, at
least two Ns are needed, in which case two of ⌫a are
massive and the other one is massless. Then neutrino
mass eigenstates are composed of 7 Majorana neutrinos,
⌫a(a = 1, 2, 3) and ⌫si(i = 4, ..., 7). In the following dis-
cussion, if not specified, we shall use ⌫a and ⌫s to collec-
tively denote the three active neutrinos and four sterile
neutrinos, respectively.

The mixing also distributes the new U(1)X gauge inter-
action to all neutrinos with actual couplings depending
on the exact mixing angles. We assume that the mixing
angles between ⌫↵ and  are negligible, compared to the
mixing between Ni and  . This can be easily achieved
by adjusting y↵i’s, fi’s and gi’s. Because of the new dark
interaction for ⌫s, all sterile neutrinos ⌫s’s are not ther-
malized by oscillation from active neutrinos and thus can
contribute to the number of e↵ective neutrino by a proper
amount, �Ne↵ < 1 after BBN [48, 49].

The exact mass spectrum and mixing angles for ⌫s are
free, subject to conditions for fitting the data. We shall
take at least one ⌫s is around 1 eV and others as free,
lighter or heavier, and the mixing angles among ⌫s are
large enough for suppressing their production by oscilla-
tion from active neutrino.

Our model improves the similar model presented in
a recent paper [50] in two aspects. First, our model
is ultraviolet complete and thus renormalizable, while
Ref. [50] assumed a dimensional-5 operator for generating

P. Ko, YT, 1404.0236

We introduce two right-handed gauge singlets, 
a dark sector with an extra U(1)X  gauge 
symmetry,  

v� ⇠ O (MeV) for our interest
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Various Mixings
• Kinetic mixing term                   leads to 

three physical neutral gauge boson mixing, 

• Scalar interaction term  
   leads to Higgs mixing, 

•                                                 give rise to 

neutrino mixing.

1

2
sin ✏X̂µ⌫B̂

µ⌫

��H

"
�†
X�X �

v2�
2

# 
H†H � v2h

2

�

y↵iL̄↵HNi, fi�
†
XN̄i , gi�X  ̄Ni
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Physical Spectrum
• Dark Matter, dark gauge boson, dark 

Higgs, and 4 sterile neutrinos,

�,

Xµ, H2, ⌫s Standard Model
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Thermal History

• DM chemically decoupled, determining its relic density, 
• Then the whole dark sector decoupled from SM thermal 

bath, and entropy is conserved separately. Effective 
number of neutrinos can be calculated. 

• Relativistic particles at CMB time contribute as hot dark 
matter. Sterile neutrinos are not thermalized due to the 
new interaction.

�,

Xµ, H2, ⌫s
Standard Model

sin ✏

��H
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ΔNeff(BBN)
When only sterile neutrinos are relativistic at 
the time just before BBN epoch, we have  
!
!
!

 and 
!

                                         It gives   

�Ne↵ (T ) = 4⇥
T 4
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T 4
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⇥
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� 4
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ΔNeff(CMB) and mνs 

Contours for CMB 
data,1308.3255 !
Dot line marks the 
centre value for 3+2 
scenario for neutrino 
oscillation,1303.3011 !
Region between two 
vertical lines are 
allowed in our model, 
1404.0236

3

the active-sterile neutrino mixing and therefore depends
on the UV completion. Second, we shall show below that
the model presented in this paper can reconcile the cur-
rent cosmological data with neutrino oscillation experi-
ments within 1� rather than only within 2� as discussed
in [50].

THERMAL HISTORY AND CDM
CONTROVERCIES

Communication between dark sector and SM particles
or thermal history before BBN time is determined mostly
by two mixing parameters, sin ✏ and ��H . After the cross
sections of dark partices’ scattering o↵ SM particle drop
below the expansion rate of the Universe, dark sector
decouples from the thermal bath of visible one and con-
servation of entropy density is preserved in each sector.
The decoupling temperature of dark sector, T dec

x , decides
how much �Ne↵ is left at a later time. The exact value
for �Ne↵ will be given in the following.

Chemical decoupling of DM from the heat bath sets its
relic density today. After the temperature drops below
m�, � starts to leave the chemical equilibrium and would
finally freeze out at T ' m�/25. To account for the
correct thermal relic density, the thermal cross section for
��̄ annihilation h�vi should be around 3 ⇥ 10�26cm3/s.
The dominant annihilation channel in this model is ��̄ !
XX (X represents the ⇠ O (MeV) dark photon), and the
relic density requires the gauge coupling gX to be [53]

gX ⇠ 0.50

Q�
⇥
✓
0.114

⌦cdm

◆ 1
4 ⇣ m�

TeV

⌘ 1
2
, (6)

where Q� is the U(1)X charge of � and shall be taken
⇠ O(1) for definiteness in later discussion 2.

Kinetic decoupling of � from ⌫s happens at much later
time when the elastic scattering rate for �⌫s $ �⌫s drops
below some value determined by Hubble parameter H.
For a thermal distribution of sterile neutrino, the decou-
pling temperature is given by [28]

T kd
� ' 1keV

✓
0.1

gX

◆✓
T�

T⌫s

◆ 3
2

kd

⇣ m�

TeV

⌘ 1
4
⇣ mX

MeV

⌘
, (7)

where T� and T⌫s are the temperatures of CMB and ster-
ile neutrinos, respectively. T kd

� is translated into a cuto↵
in the power spectrum of matter density perturbation
with

Mcut ⇠ 1.7⇥ 108
 
T kd
�

keV

!�3

M�.

2 Q� should be di↵erent from Q� in order that it does not decay
through Yukawa interaction with the RH neutrinos.

Then Mcut ⇠ O(109)M� can be easily obtained for ex-
planation ofmissing satellites for O(TeV) � and O(MeV)
Xµ.
Because of the light mediator Xµ, the DM self-

scattering ��̄ ! ��̄ can have a large cross section,
� ⇠ 1cm2/g, which can flatten the dark halo, decrease
the total mass of halo centre and resolve both cusp vs.

core and too-big-to-fail controversies.

EFFECTIVE NUMBER OF EXTRA NEUTRINOS
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1.5

2.0

2.5

3.0
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Sm
n s
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FIG. 1: The allowed range for �Ne↵ and
P

mvs . The
blue(solid) and purple(dashed) contours [30] correspend to
the 1� and 2� for the cosmological data with the best fit point
�Ne↵ = 0.61±0.30, me↵

hdm = (0.47±0.13) eV. The region be-
tween two red vertical lines can be achieved in our model. And
the horizontal dotted line marks the centre value for

P
m⌫s

from the global fit for neutrino oscillation data in 3 + 2 sce-
nario [57]. We use mt ' 173GeV and Tc is the confinement-
deconfinement transition between quarks and hadrons. See
the text for detail.

After the decoupling of dark sector from the visible
thermal bath, relativistic particles can still contribute to
the radiation density. For 4 light sterile neutrinos, their
contributions to �Ne↵ can be parametrized as

�Ne↵ (T ) = 4⇥ T 4
⌫s

T 4
⌫a

= 4⇥

g⇤s (T )

gx⇤s (T )
⇥ gx⇤s (T )T

3
⌫s

g⇤s (T )T 3
⌫a

� 4
3

= 4⇥
"
g⇤s (T )

gx⇤s (T )
⇥ gx⇤s

�
T dec
x

�

g⇤s (T dec
x )

# 4
3

, (8)

where T is the photon temperature, T dec
x is the dark sec-

tor’s decoupling temperature and g⇤s counts the total
number of relativistic degrees of freedom for entropy (gx⇤s



Yong Tang (KIAS)                       Self-Interacting DM                                      Planck 2014

ΔNeff helps reconcile Planck and BICEP2 
C.Dvorkin, M.Wyman, D.Rudd, W.Hu, arXiv:1403.8049

3

νrΛCDM–EC νΛCDM–CL νrΛCDM–ECL

∆Neff 0.93± 0.36 0.52 ± 0.27 0.81 ± 0.25

ms [eV] < 0.21 0.47 ± 0.14 0.47 ± 0.13

r 0.19± 0.04 – 0.22 ± 0.05

100Ωbh
2 2.265 ± 0.042 2.267 ± 0.027 2.279 ± 0.027

Ωch
2 0.130 ± 0.005 0.120 ± 0.005 0.125 ± 0.004

100θMC 1.040 ± 0.001 1.041 ± 0.001 1.041 ± 0.001

τ 0.100 ± 0.015 0.096 ± 0.014 0.097 ± 0.014

ln(1010As) 3.132 ± 0.033 3.102 ± 0.030 3.112 ± 0.030

ns 0.996 ± 0.017 0.982 ± 0.012 0.998 ± 0.010

h 0.73± 0.04 0.70 ± 0.01 0.72 ± 0.01

S8 0.89± 0.03 0.81 ± 0.01 0.81 ± 0.01

TABLE II. Parameter constraints (68% confidence level) with various model and data assumptions. Note that the νΛCDM-CL
case is in a different, no tensor model, context than the others which affects parameter interpretations.

FIG. 1. Early Universe tension and neutrinos. In the νrΛCDM
parameter space the EC data set favors ∆Neff> 0 in order to offset
the excess large angle temperature anisotropy implied by the high
tensor-scalar ratio r (68%, 95% contours here and below). This in
turn is driven by the degeneracy between ∆Neff and ns illustrated
in Fig. 2. In brief, gravitational waves add power at low ℓ, requiring
larger ns to compensate. Larger ns then requires larger ∆Neff to
agree with the higher-ℓ CMB.

II. RESULTS

We begin by discussing the tension introduced by the
BICEP2 data in the EC data set in the rΛCDM model
and its alleviation in the νrΛCDM space independently
of the CL data.
In Fig. 1 we show the two dimensional r−∆Neff pos-

terior for the EC data and the νrΛCDM model. Note
in particular that r ∼ 0.2 would favor a fully populated
∆Neff∼ 1 extra neutrino state, while ∆Neff= 0 is sig-
nificantly disfavored (at 2.6σ once r is marginalized, see
Tab. II). The origin of this preference is exposed by ex-
amining the ns−∆Neff plane in Fig. 2. Extra neutrino
energy density at recombination allows a higher tilt and

FIG. 2. In the νrΛCDM parameter space the EC data set allows
a positive change in the tilt when ∆Neff is increased explaining
the mechanism by which the large angle temperature anisotropy is
reduced.

hence removes excess power in the low multipole tem-
perature anisotropy. For example changing ns from 0.96
to 1 reduces the amount of power at k = 0.002 Mpc−1

relative to 0.05 Mpc−1 by 0.88, a reduction comparable
to the amount of temperature power added by tensors
when r = 0.2.
This change simultaneously relaxes the CMB-ΛCDM

upper bound on H0, as can be seen in Fig. 3. Extra
neutrino energy density at recombination changes the
amount of time sound waves propagate in the CMB-
baryon plasma and hence the standard ruler for CMB
and BAO distance measures.
Note that the EC data set does not incorporate late

Universe measurements of H0 or S8. It is therefore in-
teresting to compare the posterior probability of these
parameters with the actual measurements before com-
bining them into a joint likelihood. In Fig. 4, we show
these distributions from the νrΛCDM-EC analysis. Pre-
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Features 
• ultraviolet complete theory for cold dark matter and 

sterile neutrinos that can accommodate both 
cosmological data and neutrino oscillation experiments 
within 1σ level, 

• DM's self-scattering and scattering-off sterile neutrinos  
can resolve three controversies for cold DM on small 
cosmological scales, cusp vs. core, too-big-to-fail and 
missing satellites problem, 

• eV sterile neutrinos can fit some neutrino oscillation 
anomalies, contribute to dark radiation and also 
reconcile the tension between the data by Planck and 
BICEP2 on the tensor-to-scalar ratio.
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Model 2—Z3 symmetry

Again an extra U(1)X gauge symmetry is 
introduced, with scalar DM X and dark higgs 
with charges 1 and 3, respectively.
L = LSM � 1

4
X̃µ⌫X̃

µ⌫ � 1

2
sin ✏X̃µ⌫B̃

µ⌫ +Dµ�
†
XDµ�X +DµX

†DµX � V

V = �µ2
HH†H + �H

�
H†H

�2 � µ2
��

†
X�X + ��

⇣
�†
X�X

⌘2
+ µ2

XX†X + �X

�
X†X

�2

+ ��H�†
X�XH†H + ��XX†X�†

X�X + �HXX†XH†H +
⇣
�3X

3�†
X +H.c.

⌘

P, Ko, YT, arXiv:1402.6449

!

X3 +X†3
X ! ei

2⇡
3 X

X† ! e�i 2⇡3 X†Z3 symmetry
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Semi-annihilation

(a) (b)

X

X

X̄

H1/H2 H1/H2

X

X

X̄

(c)

H1/H2

X̄X

X

(d)

H1/H2

X̄
X

X

(e) (f)

X

X

X̄

Z ′/Z Z ′/Z

X

X

X̄

(g)

Z ′/Z

X̄X

X

dnX

dt
= �v�XX⇤!Y Y

�
n2
X � n2

X eq

�
� 1

2
v�XX!X⇤Y

�
n2
X � nXnX eq

�
� 3HnX ,

r ⌘ 1

2

v�XX!X⇤Y

v�XX⇤!Y Y + 1
2v�

XX!X⇤Y
.

micrOMEGAs
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Relic density and Direct Search

• Blue band marks the 
upper bound, 

• All points are 
allowed in our local 
Z3 model,1402.6449 

• only circles are 
allowed in global Z3 
model,1211.1014  

!
!
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illustrations
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Summary

• Introduction of the controversies in CDM 
paradigm 

• Self-interacting DM is an attractive solution 
• We propose a model νΛMDM based on an 

extra U(1) gauge symmetry for sterile 
neutrinos and DM for various purposes 

• We also introduce a model with discrete Z3 
symmetry for SIDM. 
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THANK YOU!


