28 May 2014
\section*{Planck 2014 (Institut des Cordeliers)}

Model Independent Bounds in Direct DM Searches

Paolo Panci uRmC

based on:
P.Panci,

Review in Adv.High Energy.Phys. [arXiv: 1402.1507]
M.Cirelli, E.Del Nobile, P.Panci

JCAP 1310 (2013), 019, [arXiv: 1307.5955]

Direct Detection: Overview

Direct searches aim at detecting the nuclear recoil possibly induced by:

- elastic scattering:

$$
\chi+\mathcal{N}(A, Z)_{\text {rest }} \rightarrow \chi+\mathcal{N}(A, Z)_{\text {recoil }}
$$

- inelastic scattering:
$\chi+\mathcal{N}(A, Z)_{\text {rest }} \rightarrow \chi^{\prime}+\mathcal{N}(A, Z)_{\text {recoil }}$

DM signals are very rare events (less then $1 \mathrm{cpd} / \mathrm{kg} / \mathrm{keV}$)
Experimental priorities for DM Direct Detection:
the detectors must work deeply underground in order to reduce the
background of cosmic rays
they use active shields and very clean materials against the residual radioactivity in the tunnel (γ, α and neutrons)
they must discriminate multiple scattering (DM does not scatter twice in the detector)

Direct Detection: Overview

DM local velocity $v_{0} \sim 10^{-3} c \quad \Rightarrow$ the collision between $\chi \& \mathcal{N}$ occurs in deeply non relativistic regime

Direct Detection: Overview

DM local velocity $v_{0} \sim 10^{-3} c \quad \Rightarrow$ the collision between $\chi \& \mathcal{N}$ occurs in deeply non relativistic regime

Theoretical differential rate of nuclear recoil in a given detector

$$
\frac{\mathrm{d} R_{\mathcal{N}}}{\mathrm{d} E_{\mathrm{R}}}=N_{\mathcal{N}} \frac{\rho_{\odot}}{m_{\chi}} \int_{v_{\min }\left(E_{\mathrm{R}}\right)}^{v_{\mathrm{esc}}} \mathrm{~d}^{3} v|\vec{v}| f(\vec{v}) \frac{\mathrm{d} \sigma}{\mathrm{~d} E_{\mathrm{R}}}
$$

$\boxed{\square} N_{\mathcal{N}}=N_{a} / A_{\mathcal{N}}$: Number of target $v_{\min }\left(E_{\mathrm{R}}\right)=\sqrt{\frac{m_{\mathcal{N}} E_{\mathrm{R}}}{2 \mu_{\chi \mathcal{N}}^{2}}}\left(1+\frac{\mu_{\chi \mathcal{N}} \delta}{m_{\mathcal{N}} E_{\mathrm{R}}}\right)$: Minimal velocity
$\square \rho_{\odot} / m_{\chi}:$ DM number density
$v_{\text {esc }}$: DM escape velocity ($450-650 \mathrm{~km} / \mathrm{s}$)

Differential Cross Section

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} E_{\mathrm{R}}}\left(v, E_{\mathrm{R}}\right)=\frac{1}{32 \pi} \frac{1}{m_{\chi}^{2} m_{\mathcal{N}}} \frac{1}{v^{2}}\left|\mathcal{M}_{\mathcal{N}}\right|^{2} \rightarrow \begin{gathered}
\text { Matrix Element (ME) for } \\
\text { the DM-nucleus scattering }
\end{gathered}
$$

$v \ll c \quad \Rightarrow$ the framework of relativistic quantum field theory is not appropriate

Differential Cross Section

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} E_{\mathrm{R}}}\left(v, E_{\mathrm{R}}\right)=\frac{1}{32 \pi} \frac{1}{m_{\chi}^{2} m_{\mathcal{N}}} \frac{1}{v^{2}}\left|\mathcal{M}_{\mathcal{N}}\right|^{2} \rightarrow \underset{\text { Matrix Element (ME) for }}{\text { Mhe DM-nucleus scattering }}
$$

$v \ll c \Rightarrow$ the framework of relativistic quantum field theory is not appropriate Non relativistic (NR) operators framework

NR d.o.f. for elastic scattering
\vec{v} : DM-nucleon relative velocity
\vec{q} : exchanged momentum
$\vec{s}_{N}:$ nucleon $\operatorname{spin}(N=(p, n))$
$\vec{s}_{\chi}:$ DM spin
The DM-nucleon ME can be constructed from Galileian invariant combination of d.o.f.

$$
\left|\mathcal{M}_{N}\right|=\sum_{i=1}^{12} \mathfrak{c}_{i}^{N}\left(\lambda, m_{\chi}\right) \mathcal{O}_{i}^{\mathrm{NR}}
$$

functions of the parameters of your favorite theory (e.g. couplings, mixing angles, mediator masses), expressed in terms of NR operators

Differential Cross Section

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} E_{\mathrm{R}}}\left(v, E_{\mathrm{R}}\right)=\frac{1}{32 \pi} \frac{1}{m_{\chi}^{2} m_{\mathcal{N}}} \frac{1}{v^{2}}\left|\mathcal{M}_{\mathcal{N}}\right|^{2} \rightarrow \underset{\text { Matrix Element (ME) for }}{\text { Me DM-nucleus scattering }}
$$

$v \ll c \Rightarrow$ the framework of relativistic quantum field theory is not appropriate
Non relativistic (NR) operators framework

NR d.o.f. for elastic scattering
\vec{v} : DM-nucleon relative velocity
\vec{q} : exchanged momentum
\vec{s}_{N} : nucleon spin $(N=(p, n))$
$\vec{s}_{\chi}: D M$ spin
The DM-nucleon ME can be constructed from Galileian invariant combination of d.o.f.

$$
\left|\mathcal{M}_{N}\right|=\sum_{i=1}^{12} \mathfrak{c}_{i}^{N}\left(\lambda, m_{\chi}\right) \mathcal{O}_{i}^{\mathrm{NR}}
$$

functions of the parameters of your favorite theory (e.g. couplings, mixing angles, mediator masses), expressed in terms of NR operators

Contact interaction (q << \wedge)

$$
\mathcal{O}_{1}^{\mathrm{NR}}=\mathbb{1}
$$

$$
\mathcal{O}_{3}^{\mathrm{NR}}=i \vec{s}_{N} \cdot\left(\vec{q} \times \vec{v}^{\perp}\right), \quad \mathcal{O}_{4}^{\mathrm{NR}}=\vec{s}_{\chi} \cdot \vec{s}_{N}
$$

$$
\mathcal{O}_{5}^{\mathrm{NR}}=i \vec{s}_{\chi} \cdot\left(\vec{q} \times \vec{v}^{\perp}\right), \quad \mathcal{O}_{6}^{\mathrm{NR}}=\left(\vec{s}_{\chi} \cdot \vec{q}\right)\left(\vec{s}_{N} \cdot \vec{q}\right)
$$

$\mathcal{O}_{7}^{\mathrm{NR}}=\vec{s}_{N} \cdot \vec{v}^{\perp}$,
$\mathcal{O}_{8}^{\mathrm{NR}}=\vec{s}_{\chi} \cdot \vec{v}^{\perp}$,
$\mathcal{O}_{9}^{\mathrm{NR}}=i \vec{s}_{\chi} \cdot\left(\vec{s}_{N} \times \vec{q}\right), \quad \mathcal{O}_{10}^{\mathrm{NR}}=i \vec{s}_{N} \cdot \vec{q}$,
$\mathcal{O}_{11}^{\mathrm{NR}}=i \vec{s}_{\chi} \cdot \vec{q}, \quad \mathcal{O}_{12}^{\mathrm{NR}}=\vec{v}^{\perp} \cdot\left(\vec{s}_{\chi} \times \vec{s}_{N}\right)$

Long-range interaction ($q \gg$)

$$
\begin{array}{ll}
\mathcal{O}_{1}^{\mathrm{lr}}=\frac{1}{q^{2}} \mathcal{O}_{1}^{\mathrm{NR}}, & \mathcal{O}_{5}^{\mathrm{lr}}=\frac{1}{q^{2}} \mathcal{O}_{5}^{\mathrm{NR}}, \\
\mathcal{O}_{6}^{\mathrm{Ir}}=\frac{1}{q^{2}} \mathcal{O}_{6}^{\mathrm{NR}}, & \mathcal{O}_{11}^{\mathrm{lr}}=\frac{1}{q^{2}} \mathcal{O}_{11}^{\mathrm{NR}} .
\end{array}
$$

Differential Cross Section

Nucleus is not point-like
There are different Nuclear Responses for any pairs of nucleons \& any pairs of NR Operators

$$
\left|\mathcal{M}_{\mathcal{N}}\right|^{2}=\frac{m_{\mathcal{N}}^{2}}{m_{N}^{2}} \sum_{i, j=1}^{12} \sum_{N, N^{\prime}=p, n} \mathfrak{c}_{i}^{N} \mathfrak{c}_{j}^{N^{\prime}} F_{i, j}^{\left(N, N^{\prime}\right)}\left(v, q^{2}\right)
$$ pairs of NR pairs of operators nucleons

Nuclear response of the target nuclei

Nuclear responses for some common target nuclei in Direct Searches

"The Effective Field Theory of Dark Matter Direct Detection", JCAP 1302 (2013) 004

Rate of Nuclear Recoil

$$
\frac{\mathrm{d} R_{\mathcal{N}}}{\mathrm{d} E_{\mathrm{R}}}=N_{\mathcal{N}} \frac{\rho_{\odot}}{m_{\chi}} \frac{1}{32 \pi} \frac{m_{\mathcal{N}}}{m_{\chi}^{2} m_{N}^{2}} \sum_{i, j=1}^{12} \sum_{N, N^{\prime}=p, n} \mathfrak{c}_{i}^{N} \mathfrak{c}_{j}^{N^{\prime}} \int_{v_{\min }\left(E_{\mathrm{R}}\right)}^{v_{\mathrm{esc}}} \mathrm{~d}^{3} v \frac{1}{v} f_{\oplus}(v) F_{i, j}^{\left(N, N^{\prime}\right)}\left(v, q^{2}\right)
$$

Rate of Nuclear Recoil

$$
\frac{\mathrm{d} R_{\mathcal{N}}}{\mathrm{d} E_{\mathrm{R}}}=N_{\mathcal{N}} \frac{\rho_{\odot}}{m_{\chi}} \frac{1}{32 \pi} \frac{m_{\mathcal{N}}}{m_{\chi}^{2} m_{N}^{2}} \sum_{i, j=1}^{12} \sum_{N, N^{\prime}=p, n} \mathfrak{c}_{i}^{N} \mathfrak{c}_{j}^{N^{\prime}} \int_{v_{\min }\left(E_{\mathrm{R}}\right)}^{v_{\mathrm{esc}}} \mathrm{~d}^{3} v \frac{1}{v} f_{\oplus}(v) F_{i, j}^{\left(N, N^{\prime}\right)}\left(v, q^{2}\right)
$$

exposure
Comparison with the Experimental data

takes into account the response and energy resolution of the detector
runs over the different species in the detector (e.g. DAMA and CRESST are multiple-target)
quenching factor: accounts for the partial recollection of the released energy

$$
\frac{\mathrm{d} R_{\mathcal{N}}}{\mathrm{d} E_{\mathrm{R}}}=N_{\mathcal{N}} \frac{\left(\rho_{0}\right)}{m_{\chi}} \frac{1}{32 \pi} \frac{m_{\mathcal{N}}}{m_{\chi}^{2} m_{N}^{2}} \sum_{i, j=1}^{12} \sum_{N, N^{\prime}=p, n} \mathfrak{c}_{i}^{N} \mathfrak{c}_{j}^{N^{\prime}} \int_{v_{\min }\left(E_{\mathrm{R}}\right)}^{v_{\mathrm{esc}}} \mathrm{~d}^{3} v \frac{1}{v_{\emptyset}}(v) ; F_{i, j}^{\left(N, N^{\prime}\right)}\left(v, q^{2}\right)
$$

exposure

Comparison with the Experimental data

$$
N_{k}^{\text {th }}=w_{k} \int_{\Delta E_{i}} \mathrm{~d} E_{\mathrm{det}} \epsilon\left(E_{\mathrm{det}} \int_{0}^{\infty} \mathrm{d} E_{\mathrm{R}} \sum_{\mathcal{N}=\text { Nucleus }} \mathcal{K}_{\mathcal{N}}\left(q_{\mathcal{N}} E_{\mathrm{R}}, E_{\mathrm{det}}\right) \frac{\mathrm{d} R_{\mathcal{N}}}{\mathrm{d} E_{\mathrm{R}}}\left(E_{\mathrm{R}}\right)\right.
$$

takes into account the response and energy resolution of the detector
runs over the different species in the detector (e.g. DAMA and CRESST are multiple-target)
quenching factor: accounts for the partial recollection of the released energy

Uncertainties in Direct DM Searches

Local DM energy Density \& Geometry of the Halo (e.g: spherically symmetric halos with isotropic or not velocity dispersion, triaxial models, co-rotating dark disk and so on......)

Nature of the interaction \& Nuclear Responses (e.g: SI \& SD scattering, long-range or point like character of the interaction and so on......)

exposure
Comparison with the Experimental data

$$
N_{k}^{\mathrm{th}}=w_{k} \int_{\Delta E_{k}} \mathrm{~d} E_{\text {det }} \epsilon\left(E_{\text {det }}\right) \int_{0}^{\infty} \mathrm{d} E_{\mathrm{R}} \sum_{\mathcal{N}=\text { Nucleus }} \mathcal{K}_{\mathcal{N}}\left(q_{\mathcal{N}} E_{\mathrm{R}}, E_{\mathrm{det}}\right) \frac{\mathrm{d} R_{\mathcal{N}}}{\mathrm{d} E_{\mathrm{R}}}\left(E_{\mathrm{R}}\right)
$$

takes into account the response and energy resolution of the detector
runs over the different species in the detector (e.g. DAMA and CRESST are multiple-target)
quenching factor: accounts for the partial recollection of the released energy

Uncertainties in Direct DM Searches

Local DM energy Density \& Geometry of the Halo (e.g: spherically symmetric halos with isotropic or not velocity dispersion, triaxial models, co-rotating dark disk and so on......)

Nature of the interaction \& Nuclear Responses (e.g: SI \& SD scattering, long-range or point like character of the interaction and so on......)

$$
\frac{\mathrm{d} R_{\mathcal{N}}}{\mathrm{d} E_{\mathrm{R}}}=N_{\mathcal{N}} \frac{\rho_{0}}{m_{\chi}} \frac{1}{32 \pi} \frac{m_{\mathcal{N}}}{m_{\chi}^{2} m_{N}^{2}} \sum_{i, j=1}^{12} \sum_{N, N^{\prime}=p, n} \mathfrak{c}_{i}^{N} \mathfrak{c}_{j}^{N^{\prime}} \int_{v_{\min }\left(E_{\mathrm{R}}\right)}^{v_{\mathrm{esc}}} \mathrm{~d}^{3} v \frac{1}{v_{\dot{f}}(v)} F_{i, j}^{\left(N_{N}, N^{\prime}\right)}\left(v, q^{2}\right)
$$

exposure

Comparison with the Experimental data

$$
N_{k}^{\mathrm{th}}=w_{k} \int_{\Delta E_{k}} \mathrm{~d} E_{\text {det }} \epsilon\left(E_{\text {det }}\right) \int_{0}^{\infty} \mathrm{d} E_{\mathrm{R}} \sum_{\mathcal{N}=\text { Nucleus }} \mathcal{K}_{\mathcal{N}}\left(q \mathcal{N} E_{\mathrm{R}}, E_{\text {det }}\right) \frac{\mathrm{d} R_{\mathcal{N}}}{\mathrm{d} E_{\mathrm{R}}}\left(E_{\mathrm{R}}\right)
$$

takes into account the response: and energy resolution of the detector
:runs over the different species: in the detector (e.g. DAMA and CRESST are multiple-target)
quenching factor: accounts for the partial recollection of the released energy

Uncertainties in Direct DM Searches

Local DM energy Density \& Geometry of the Halo (e.g: spherically symmetric halos with isotropic or not velocity dispersion, triaxial models, co-rotating dark disk and so on......)

Nature of the interaction \& Nuclear Responses (e.g: SI \& SD scattering, long-range or point like character of the interaction and so on......)

Experimental uncertainties (e.g: detection efficiency close to the lower threshold, energy dependence of the quenching factors, channeling in crystals and so on......)

Expected Number of Events

once computed the integrated form factors, one can easily derive the expected number of events for any kinds of interactions, whose particle physics in completely encapsulated in the coefficient c_{i}^{N}

Expected Number of Events

once computed the integrated form factors, one can easily derive the expected number of events for any kinds of interactions, whose particle physics in completely encapsulated in the coefficient \mathfrak{c}_{i}^{N}

Model independent Bounds in direct DM searches

I'm going to present a new framework for "scaling" a bound given on a certain benchmark interaction to any other kinds of interactions

For example the model dependent bounds presented by the experimental collaborations can also be applied to other class of models

Benchmark interaction

Among all the NR interactions we choose the simplest: (a model where DM interact with only protons with a constant cross section)

benchmark DM constant

Benchmark interaction

Contact interaction

$O_{4}^{\mathrm{NR}}=\vec{s}_{\chi} \cdot \vec{s}_{N}$,
$\mathrm{O}_{6}^{\mathrm{NR}}=\left(\vec{s}_{\chi} \cdot \vec{q}\right)\left(\vec{s}_{N} \cdot \vec{q}\right)$
$\mathrm{O}_{8}^{\mathrm{NR}}=\vec{s}_{\chi} \cdot \vec{v}^{\perp}$,
$O_{10}^{\mathrm{NR}}=i \vec{s}_{N} \cdot \vec{q}$,
$\mathrm{O}_{12}^{\mathrm{NR}}=\vec{v}^{\perp} \cdot\left(\vec{s}_{\chi} \times \vec{s}_{N}\right)$

LR interaction

Among all the NR interactions we choose the simplest: (a model where DM interact with only protons with a constant cross section)

$$
c_{1}^{p}=\lambda_{\mathrm{B}} \text { while } \mathfrak{c}_{1}^{N^{-}}=0
$$

Benchmark DM-nucleon ME

$$
\left|\mathcal{M}_{p, \mathrm{~B}}\right|=\lambda_{\mathrm{B}} \mathcal{O}_{1}^{\mathrm{NR}}
$$

Events for the benchmark model
$N_{k, \mathrm{~B}}^{\mathrm{th}}=X \lambda_{\mathrm{B}}^{2} \tilde{\mathcal{F}}_{1,1}^{(p, p)}\left(m_{\chi}, k\right)$
benchmark DM constant

Determination of the maximal value of λ_{B} allowed by the experimental data-set
Likelihood Ratio Test Statistic (TS)
$\mathrm{TS}\left(\lambda_{\mathrm{B}}, m_{\chi}\right)=-2 \ln \left(\mathcal{L}\left(\vec{N}^{\text {obs }} \mid \lambda_{\mathrm{B}}\right) / \mathcal{L}_{\mathrm{bkg}}\right)$
likelihood of obtaining the \qquad $\forall b k g$. likelihood
for any given value of m_{χ}, a $90 \% \mathrm{CL}$ lower bound on the free parameter can be obtained by solving

$$
\mathrm{TS}\left(\lambda_{\mathrm{B}}, m_{\chi}\right)=\chi_{90 \% \mathrm{CL}}^{2} \simeq 2.71
$$

Benchmark interaction

Contact interaction

$0_{1}^{\mathrm{VR}}=1$

$0_{3}^{\mathrm{NR}}=i \vec{s}_{N} \cdot\left(\vec{q} \times \vec{v}^{\perp}\right), O_{4}^{\mathrm{NR}}=\vec{s}_{\chi} \cdot \vec{s}_{N}$,
$O_{5}^{\mathrm{NR}}=i \vec{s}_{\chi} \cdot\left(\vec{q} \times \vec{v}^{\perp}\right), \quad 0_{6}^{\mathrm{NR}}=\left(\vec{s}_{\chi} \cdot \vec{q}\right)\left(\vec{s}_{N} \cdot \vec{q}\right)$
$O_{7}^{\mathrm{NR}}=\vec{s}_{N} \cdot \vec{v}^{\perp}, \quad O_{8}^{\mathrm{NR}}=\vec{s}_{X} \cdot \vec{v}^{\perp}$
$O_{9}^{\mathrm{NR}}=i \vec{s}_{\chi} \cdot\left(\vec{s}_{N} \times \vec{q}\right), \quad 0_{10}^{\mathrm{NR}}=i \vec{s}_{N} \cdot \vec{q}$
$0_{11}^{\mathrm{NR}}=i \vec{s}_{\chi} \cdot \vec{q}$,
$0_{12}^{\mathrm{NR}}=\vec{v}^{\perp} \cdot\left(\vec{s}_{\chi} \times \vec{s}_{N}\right)$

LR interaction
$0_{1}^{\mathrm{r}}=\frac{1}{q^{2}} 0_{1}^{\mathrm{NR}}, \quad O_{5}^{\mathrm{Lr}}=\frac{1}{q^{2}} 0_{5}^{\mathrm{NR}}$ $O_{6}^{\mathrm{Ir}}=\frac{1}{q^{2}} O_{6}^{\mathrm{NR}}, \quad O_{11}^{\mathrm{rr}}=\frac{1}{q^{2}} O_{11}^{\mathrm{NR}}$

Among all the NR interactions we choose the simplest: (a model where DM interact with only protons with a constant cross section)

$$
\mathfrak{c}_{1}^{p_{1}}=\lambda_{\mathrm{B}} \text { while } \mathfrak{c}_{1}^{N^{-}}=0
$$

Benchmark DM-nucleon ME $\left|\mathcal{M}_{p, \mathrm{~B}}\right|=\lambda_{\mathrm{B}} \mathcal{O}_{1}^{\mathrm{NR}}$

Events for the benchmark model
$N_{k, \mathrm{~B}}^{\mathrm{th}}=X \lambda_{\mathrm{B}}^{2} \tilde{\mathcal{F}}_{1,1}^{(p, p)}\left(m_{\chi}, k\right)$
benchmark DM constant

Determination of the maximal value of λ_{B} allowed by the experimental data-set

Likelihood Ratio Test Statistic (TS)
$\mathrm{TS}\left(\lambda_{\mathrm{B}}, m_{\chi}\right)=-2 \ln \left(\mathcal{L}\left(\vec{N}^{\text {obs }} \mid \lambda_{\mathrm{B}}\right) / \mathcal{L}_{\text {bkg }}\right)$
likelihood of obtaining the set of observed data
$\forall b k g$. likelihood
for any given value of $m_{\chi}, a 90 \% \mathrm{CL}$ lower bound on the free parameter can be obtained by solving $\mathrm{TS}\left(\lambda_{\mathrm{B}}, m_{\chi}\right)=\chi_{90 \% \mathrm{CL}}^{2} \simeq 2.71$

The functions TS that allow the users to compute the bound $\lambda_{\mathrm{B}}^{\mathrm{CL}}$ at the desired CL are provided here:
http://www.marcocirelli.net/NROpsDD.html

Rescaling Functions

For any model the bound
must be drawn at the same CL
$\mathrm{TS}\left(\lambda, m_{\chi}\right)=\operatorname{TS}\left(\lambda_{\mathrm{B}}, m_{\chi}\right)$
For null-results Exps. a solution is:
$\sum_{k} N_{k}^{\mathrm{th}}\left(\lambda, m_{\chi}\right)=\sum_{k} N_{k, \mathrm{~B}}^{\mathrm{th}}\left(\lambda_{\mathrm{B}}, m_{\chi}\right)$

Rescaling Functions

For any model the bound must be drawn at the same CL :
$\operatorname{TS}\left(\lambda, m_{\chi}\right)=\operatorname{TS}\left(\lambda_{\mathrm{B}}, m_{\chi}\right)$
For null-results Exps. a solution is:
$\sum_{k} N_{k}^{\mathrm{th}}\left(\lambda, m_{\chi}\right)=\sum_{k} N_{k, \mathrm{~B}}^{\mathrm{th}}\left(\lambda_{\mathrm{B}}, m_{\chi}\right)$

$$
\sum_{i, j=1}^{12} \sum_{N, N^{\prime}=p, n^{2}} \mathfrak{c}_{\substack{N \\ \\ \text { Particle physics part }}}^{\substack{\left.N, m_{\chi}\right) \mathfrak{c}_{j}^{N^{\prime}}\left(\lambda, m_{\chi}\right)^{i}}} \tilde{\mathcal{Y}}_{i, j}^{\left(N, N^{\prime}\right)}\left(m_{\chi}\right)=\lambda_{\mathrm{B}}^{2}
$$

$$
\tilde{\mathcal{Y}}_{i, j}^{\left(N, N^{\prime}\right)}\left(m_{\chi}\right)=\frac{\sum_{k} \tilde{\mathcal{F}}_{i, j}^{\left(N, N^{\prime}\right)}\left(m_{\chi}, k\right)}{\sum_{k} \tilde{\mathcal{F}}_{1,1}^{(p, p)}\left(m_{\chi}, k\right)} \begin{aligned}
& \text { "Scaling" Functions } \\
& \text { - } \\
& \text { - astrophysics } \\
& \text { - experimental details }
\end{aligned}
$$

Rescaling Functions

For any model the bound must be drawn at the same CL: $\operatorname{TS}\left(\lambda, m_{\chi}\right)=\operatorname{TS}\left(\lambda_{\mathrm{B}}, m_{\chi}\right)$

For null-results Exps. a solution is:
$\sum_{k} N_{k}^{\mathrm{th}}\left(\lambda, m_{\chi}\right)=\sum_{k} N_{k, \mathrm{~B}}^{\mathrm{th}}\left(\lambda_{\mathrm{B}}, m_{\chi}\right)$

$$
\sum \sum \sum \mathfrak{c}_{i}^{12}\left(\lambda, m_{\chi}\right) \mathfrak{c}_{j}^{N^{\prime}}\left(\lambda, m_{\chi}\right)_{i}^{i} \tilde{\mathcal{Y}}_{i, j}^{\left(N, N^{\prime}\right)}\left(m_{\chi}\right)=\lambda_{\mathrm{B}}^{2}
$$

$$
i, j=1 \quad N, N^{\prime}=p, n^{\prime}
$$

Model independent
$\tilde{\mathcal{Y}}_{i, j}^{\left(N, N^{\prime}\right)}\left(m_{\chi}\right)=\frac{\sum_{k} \tilde{\mathcal{F}}_{i, j}^{\left(N, N^{\prime}\right)}\left(m_{\chi}, k\right)}{\sum_{k} \tilde{\mathcal{F}}_{1,1}^{(p, p)}\left(m_{\chi}, k\right)}: \begin{aligned} & \text { "Scaling" Functions } \\ & - \text { nuclear physics } \\ & - \text { astrophysics } \\ & \text { - experimental details }\end{aligned}$
http://www.marcocirelli.net/NROpsDD.html

Example: SI \& SD Interactions

> SI DM-nucleon effective Lagrangian $$
\mathcal{L}_{\mathrm{SI}}^{N}=\lambda_{\mathrm{SI}} \cdot \bar{\chi} \chi \bar{N} N
$$ $\sigma_{\mathrm{SI}}^{p}=\frac{\lambda_{\mathrm{SI}}^{2}}{\pi} \mu_{\chi p}^{2} \quad \begin{gathered}\text { Total SI DM-nucleon } \\ \text { Cross section }\end{gathered}$

Example: SI \& SD Interactions

SI DM-nucleon effective Lagrangian $\mathcal{L}_{\mathrm{SI}}^{N}=\lambda_{\mathrm{SI}} \cdot \bar{\chi} \chi \bar{N} N$
 $\sigma_{\mathrm{SI}}^{p}=\frac{\lambda_{\mathrm{SI}}^{2}}{\pi} \mu_{\chi p}^{2} \quad \begin{gathered}\text { Total SI DM-nucleon } \\ \text { Cross section }\end{gathered}$

Non-relativistic SI DM-nucleon ME

$$
\left|\mathcal{M}_{\mathrm{SI}}^{N}\right|=\underbrace{4 \lambda_{\mathrm{SI}} m_{x} m_{N}}_{\mathrm{c}_{1}^{N}}{ }^{1}{ }_{\mathcal{O}_{1}^{\mathrm{NR}}}
$$

SD DM-nucleon effective Lagrangian

$$
\mathcal{L}_{\mathrm{SD}}^{N}=\lambda_{\mathrm{SD}} \cdot \bar{\chi} \gamma^{\mu} \gamma^{5} \chi \bar{N} \gamma_{\mu} \gamma^{5} N
$$

$$
\sigma_{\mathrm{SD}}^{p}=3 \frac{\lambda_{\mathrm{SD}}^{2}}{\pi} \mu_{\chi p}^{2} \quad \begin{gathered}
\text { Total SD DM-nucleon } \\
\text { Cross section }
\end{gathered}
$$

Non-relativistic SD DM-nucleon ME

Example: SI \& SD Interactions

SI DM-nucleon effective Lagrangian

$\mathcal{L}_{\mathrm{SI}}^{N}=\lambda_{\mathrm{SI}} \cdot \bar{\chi} \chi \bar{N} N$
$\sigma_{\mathrm{SI}}^{p}=\frac{\lambda_{\mathrm{SI}}^{2}}{\pi} \mu_{\chi p}^{2} \quad \begin{gathered}\text { Total SI DM-nucleon } \\ \text { Cross section }\end{gathered}$
Non-relativistic SI DM-nucleon ME

$$
\lambda_{\mathrm{B}}^{2}=\sigma_{\mathrm{SI}}^{p} \sum_{N, N^{\prime}=p, n} 16 \pi m_{\chi}^{2} \frac{m_{N}^{2}}{\mu_{\chi p}^{2}} \tilde{\mathcal{Y}}_{1,1}^{\left(N, N^{\prime}\right)}\left(m_{\chi}\right)
$$

SD DM-nucleon effective Lagrangian
$\mathcal{L}_{\mathrm{SD}}^{N}=\lambda_{\mathrm{SD}} \cdot \bar{\chi} \gamma^{\mu} \gamma^{5} \chi \bar{N} \gamma_{\mu} \gamma^{5} N$
$\sigma_{\mathrm{SD}}^{p}=3 \frac{\lambda_{\mathrm{SD}}^{2}}{\pi} \mu_{\chi p}^{2} \quad \begin{gathered}\text { Total SD DM-nucleon } \\ \text { Cross section }\end{gathered}$
Non-relativistic SD DM-nucleon ME

$$
\lambda_{\mathrm{B}}^{2}=\sigma_{\mathrm{SD}}^{p} \frac{256}{3} \pi m_{\chi}^{2} \frac{m_{N}^{2}}{\mu_{\chi p}^{2}} \tilde{\mathcal{Y}}_{4,4}^{(p, p)}\left(m_{\chi}\right)
$$

Summary \& Conclusions

I have described a method and a self-contained set of numerical tools to derive the bounds from some current experiments to virtually any arbitrary models of DM

- The method is based on the formalism of non-relativistic operators
- it incorporates into the nuclear responses all the necessary detector and astrophysical ingredients

Tools for model-independent bounds in direct dark matter searches
Data and Results from 1307.5955 [hep-ph], JCAP 10 (2013) 019.
If you use the data provided on this site, please cite:
M.Cirelli, E.Del Nobile, P.Panci,
"Tools for model-independent bounds in direct dark matter searches", arkin 1307 505s IC4P 1000131019

This is Retease 3.0 (April 2014). Log of changes at the bottom of this page.

Test Statistic functions:

Rescaling functions:
The $Y \mathrm{~m}$ file provides the rescaling functions $Y_{i j}^{(N, N)}$ and $Y_{i j}^{\operatorname{lr}(N, N)}$ (see the paper for the definition).

Sample file:

The Sample.nb notebook shows how to load and use the above numerical products, and gives some examples.

Log of changes and releases:
[23 jul 2013] First Release
[08 oct 2013] Minor changes in the notations in Sample.nb, to match JCAP version. No new release
[25 nov 2013] New Release: 2.0. Addition of LUX results. This release corresponds to version 3 of 1.307 .5955 (with Addendum).
[03 apr 2014] New Release: 3.0. Addition of SuperCDMS results. This release corresponds to version 4 of 1307.5955 (with two Addenda).

http://www.marcocirelli.net/NROpsDD.html

Summary \& Conclusions

I have described a method and a self-contained set of numerical tools to derive the bounds from some current experiments to virtually any arbitrary models of DM

- The method is based on the formalism of non-relativistic operators
- it incorporates into the nuclear responses all the necessary detector and astrophysical ingredients

Tools for model-independent bounds in direct dark matter searches

```
Data and Results from 1307.5955 [hep-ph], JCAP 10 (2013) 019.
If you use the data provided on this site, please cite:
M.Cirelli, E.Del Nobile, P.Panci,
"Tools for model-independent bounds in direct dark matter searches", arXiv 1307 5955, JCAP 10 (2013) 019.
```

This is Release 3.0 (April 2014). Log of changes at the bottom of this page.

Test Statistic functions:

Rescaling functions:

The Y.m file provides the rescaling functions $Y_{i j}{ }^{(N, N)}$ and $Y_{i j}{ }^{\operatorname{lr}(N, N)}$ (see the paper for the definition).

Sample file:

The Sample.nb notebook shows how to load and use the above numerical products, and gives some examples

Log of changes and releases:
[23 jul 2013] First Release.
[08 oct 2013] Minor changes in the notations in Sample.nb, to match JCAP version. No new release.
[25 nov 2013] New Release: 2.0. Addition of LUX results. This release corresponds to version 3 of 1307.5955 (with Addendum).
[03 apr 2014] New Release: 3.0. Addition of SuperCDMS results. This release corresponds to version 4 of 1307.5955 (with two Addenda).

http://www.marcocirelli.net/NROpsDD.html

