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DD experiments have kept busy...

Since quite a few years, direct detection experiments have done an amazing job!
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For m = 40 GeV, we have ~2 orders of magnitude improvement! H



...however...

Something is rotten in the kingdom of low-mass DM : weird excesses!
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- Some unidentified background?
- Something wrong with Xenon response for low DM masses (the L __ wars)?

- Some sort of non-standard DM interaction (dipole, anapole, I[VDM...)?




Isospin-violating dark matter ?

The cross-section for scattering off a point-like nucleus is

4 2
O-??bNuc — %(pr + (A_ Z)fn)2

All experimental results published in the literature assume fp =f.

However, if f / fp = -Z/(A-Z), then the two amplitudes interfere destructively and the

cross-section can vanish!
Feng, Kumar, Marfatia, Sanford (2011)

E.g. for Xenon, this happens when fn/fp ~-0.7 .

Note that the cross-section can strictly vanish for a single (Z,A) combination — The
existence of different isotopes makes it that the cross-section doesn't formally vanish in
real-life experiments.

— Different cross-sections could be expected at experiments using different materials.

But how...? ﬂ



A model for isospin-violating DM

Few concrete examples of IVDM exist in the literature.
Fransen, Kahlhoefer, Sarkar, Schmidt-Hoberg (2011)
He, Tandean (2013)
Bélanger, AG, Park, Pukhov (2013)
Hamaguchi, Liew, Moroi, Yamamoto (2014)

Let's assume a “double portal” extension of the SM by :

- A U(1), gauge group.

- A dirac fermion, uncharged under the SM gauge group.
- A real singlet scalar field, giving mass to the extra fermion.

1 . i ~ v 1 A A U 1 A — A _
L=Lgn — 5 sine B, X" — ZXWXM + §m§2X2 + yp SYY + gx X, 0yH
1 1 1 1
—AsySTSHTH + iugsfs - ZAS(STS)2 + §M§{HTH - ZAH(HTH)2

— Further assume some DM asymmetry in the early universe, so that DM is completely

dominant over anti-DM. n



The IV mechanism

The elastic scattering cross-section is given by
412
OgNuc — 7 [C(pr + (A R Z)fn)z}

The nucleon amplitudes receive two contributions :

h
INn=JfnE/ J‘V/
Consider scenarios with: ~ f,) > f, fhi o fha

so that the neutron amplitude is Higgs-dominated whereas the proton one is sensitive to
both. Then, if we choose

frim —0.4f0x

we can get the desired

ful fp = /() + 17%) = —0.7 n



The IV mechanism at play

Here's an example reproducing the CDMS-Si “excess” and satisfying all experimental
constraints, modulo LUX and superCDMS.
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— So, what's the impact of LUX and superCDMS?
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CDMS vs XENON

We started from this...
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CDMS vs XENON + LUX

...to get to this...
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CDMS vs XENON + LUX + superCDMS

...and eventually this.
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CDMS-Si vs Xenon a bit differently
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- Before the LUX results, there was essentially no tension between the two experiments
assuming |V interactions.

- It was even possible to reconcile CDMS and CoGeNT (to some extent). Not any more.
DAMA is hopeless in this framework.

- LUX puts severe pressure on the IVDM explanation of low mass excesses. ﬂ



Q: So, is the isospin-violation story over ?

A: No! Everything we presented is actually completely unrelated to the CDMS-Si excess!

Remember this picture :
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— Isospin violation arises in models, for specific parameter combinations.
— It can act in all directions.

— There's a pretty safe way of testing it : different target materials. n



What to keep from this story

- The low DM mass excesses made us realize (or remember) that the assumption fp = 1“n

IS not necessarily true. Direct detection results, invaluable as they are, do come with
assumptions and must be read with caution!

- We have shown this in a simple model that only incorporates pretty standard model-
building ingredients.

- The only point that's a bit hard to buy is the asymmetry (although asymmetric DM models
can have interesting connexions to baryogenesis).

- What the low DM mass “excesses” are is unclear. It's highly probable that they're
unrelated to DM, and LUX will probably more or less fully test them shortly.

However...

- The IVDM picture extends well beyond the low-mass regime! It's something that appears
iIn models, for any value of the DM mass, and can act in all directions.

- It is important to look for DM through different techniques and with different materials:

LUX will dominate for the next few years but lighter element detectors are also crucial! ﬂ



Thank you!




Constraints

- EWPTs

tane\ > /250 GeV >
<1
0.1 Mz -

I'(Z — 1)) <3 x0.0015 GeV

- Z invisible width

- Higgs invisible BR

BR(h — inv) < 0.3
- Flavor : basically B — Kup

- Relic density : Planck + WMAP + BAO + High L

- Direct detection : the most tricky point, since all cross-sections are suppressed to some
extent!

NB : Isotopic composition of elements properly accounted for.

________________________@6



Why the asymmetry ?

The point is that only one charge sign can cancel with the scalar contribution, not both
simultaneously.

2
T Nue = 4% c(Zfp+ (A= 2)fu)* + & Zfp + (A= Z)fn)’]

. J/ A\ J/

So, in the presence of both components, even

"l <ti i i |
If we manage to completely kill this part... -we'll still be stuck with this one!

— In some sense, the asymmetry is the hardest thing to buy in this setup.

— But then, asymmetric DM can have interesting motivations!

Y ;



Parameter space to explain CDMS-Si

91.1813 < mz < 91.1939
80.340 < my < 80.430
0.9992 < p < 1.0016

0.003 < e < 0.04
O < my <25
2my, — 7T <mgy <2my +7
0.000 < yy < 10
0.1 <gx <10
123 < my, < 129
0.2 <mp, <D

I1x107*<a<b5x1073

- Very light scalar: needed to achieve large scattering cross-sections without having problems
with the Higgs width and flavor

- Vector mass: to eliminate the symmetric DM phase — abundance fixed by asymmetry. .



The Higgs decays

Rl A R

AVEA A L, Lk

— 10

BR(hy—inv

0.2<my, <1
1<m, <3

my > 3

10

- Major constraint! The basic reason we had to resort to very light scalars in the first place.

- Not necessarily the case if we don't care about CDMS-Si though! .
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Other elements
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A useful definition

In the case of IVDM, the relevant quantity to be computed is the “normalized-to-nucleon”
scattering cross-section for each element

Soniph, (foZ + fn(A' = Z))? N By nity, (fpZ + fn(A* — Z))?

OyNZ — Oy C =
v ’ > nipd, f2 S nipd, f2




Hadronic uncertainties

Already at leading order in the chiral expansion, there are uncertainties tied to the quark
content of the nucleon
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Moreover, chiral NLO corrections can be sizeable (and nucleus-dependent).
Cirigliano, Graesser, Ovanesyan (2012)
Cirigliano, Graesser, Ovanesyan, Shoemaker (2013)

— The exact parameter values for which the effect
takes place may be subject to modifications.

(although calculation so far performed only for scalar-mediated interactions!) .



A concrete example of DD efficiency

The Inert Doublet model, “an archetype for dark matter”
Desphande, Ma(1978)
a (2006)
Barbieri, Hall, Rychkov(2006)
Honorez, Nezri, Oliver, Tytgat (2006)
A.G., Herrmann, Stal (2013)
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The WIMP-y regime is currently being excluded

(at least for moderate masses) .
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