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Motivation:

General Relativity (GR) is a very successful theory:

Gµν =
(
10−33 eV

)2
gµν + 8πGNT

dm,m,rad,..
µν

is a good parametrization of data.

An alternative:

Gµν =
(
10−33 eV

)2
Xµν + 8πGNT

dm,m,rad,..
µν

is by construction more complex. Why is this worth considering?

For further tests of GR, good to have an alternative theory to
compare with, and test both against the data. The Brans-Dicke
theory was introduced for that purpose in 1960s. Good to have an
alternative that is observationally (slightly) different.

The CC needs an incredible fine tuning, or the landscape. In the
alternative, while the big CC could be put to zero (by, e.g., some
nonlocal mechanism affecting CC but nothing else), the physical
scale of dark energy, 10−33 eV , might be a stable scale where GR is
modified – technical naturalness.
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The mass and potential terms:

The idea of an extension of GR by a mass term is arguably the
easiest to articulate and explain.

Yet, such an extension had been a problem for long time. This
problem a good enough motivation for a theorist to ask the
questions: what is the potential for gravity?

The mass and potential terms for a scalar:

Kinetic term = −(∂µΦ)2

Adding mass + potential = m2Φ2 + λΦ4

in general enables solutions with p ' −ρ.



GR Extended by Mass and Potential Terms
Previous no-go statements invalid: de Rham, GG, ’10
The Lagrangian of the theory: de Rham, GG, Tolley, ’10
Using gµν(x) and 4 scalars φa(x), a = 0, 1, 2, 3, define

Kµν (g , φ) = δµν −
√

gµαfαν fαν ≡ ∂αφa∂νφbηab

The Lagrangian is written using notation tr(K) ≡ [K]:

L = M2
pl
√
g
(
R + m2 (U2 + α3 U3 + α4 U4)

)
U2 = [K]2 − [K2]

U3 = [K]3 − 3[K][K2] + 2[K3]

U4 = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4]



Lagrangian Rewritten via Levi-Civita Symbols:

de Rham, GG, Heisenberg, Pirtskhalava ’11 (decoupling limit)
Koyama, Niz, Tasinato; Th. Nieuwenhuizen; ’11 (full theory)

L = M2
pl
√
g
(
R + m2 (U2 + α3 U3 + α4 U4)

)
U2 = εµναβε

ρσαβKµρKνσ

U3 = εµναγε
ρσβγKµρKνσKαβ

U4 = εµνρσε
αβγδKµαKνβKργKσδ

Kµν (g , φ) = δµν −
√

gµαfαν unitary gauge fαν = ηαµ

Hamiltonian construction: Hassan, Rachel A. Rosen, ’11,’12;
Deffayet, Mourad, Zahariade, ’12
Other proofs: Mirbabayi, ’12; Hinterbichler, R.A. Rosen, ’12;
Golovnev, 12; Kugo, Ohta, ’13



The vierbein formulation: Hinterbichler and Rachel A. Rosen ’12
Fully Diffeomorphism and Local Lorentz Invariant vierbein
formulation: GG, Hinterbichler, Pirtskhalava, Shang, ’13

LΛ ∼ M2
plΛ εµναβεabcd e a

µ e b
ν e c

α e d
β

The mass and potentials

L2 ∼ M2
plm

2 εµναβεabcd e a
µ e b

ν k c
α k d

β

L3 ∼ α3M
2
plm

2 εµναβεabcd e a
µ k b

ν k c
α k d

β

L4 ∼ α4M
2
plm

2 εµναβεabcd k a
µ k b

ν k c
α k d

β

where k a
µ ≡ e a

µ − λaā∂µφā, and λaā transforms w.r.t. SO(3, 1)’s.
The mass terms can be promoted to the locally SL(4) symmetric
structures by promoting λ’s to SL(4)! Hence the mass terms can
have a larger local symmetry group than the EH term does.
Deffayet, Mourad, Zahariade ’13: vierbein vs. metric formulation



Massive graviton on Minkowski background
GG, Hinterbichler, Pirtskhalava, Shang, ’13

gµν = ηµν , ∂µφ
a = δaµ

Symmetry breaking pattern

ISO(3, 1)GCT × ISO(3, 1)INT → ISO(3, 1)DIAG

Linearized theory: 3 NG Bosons eaten up by the tensor field that
becomes massive. The theory guarantees unitary 5 degrees of
freedom on (nearly) Minkowski backgrounds.

Nonlinear interactions are such that there are 5 degrees of freedom
on any background. However, there is no guarantee that some of
these 5 degrees of freedom aren’t bad on certain backgrounds, thus
destabilizing those backgrounds.



Exact Lagrangian in the Decoupling Limit (high energy limit)
For helicity 2 and helicity 0: de Rham, GG, ’10
Helicity 1: GG,Hinterbichler, Pirtskhalava, Shang; Ondo, Tolley, 13

L = −1
2
hµν Êαβµν hαβ + hµν

(
X (1)
µν +

α

Λ3
3
X (2)
µν +

β

Λ6
3
X (3)
µν

)

Πµν ≡ ∂µ∂νπ, X (1)
µν = εµαενβΠαβ

X (2)
µν = εµαρενβσΠαβΠρσ

X (3)
µν = εµαργενβσδΠ

αβΠρσΠγδ

*Invariant, under linear diffs (up to a total derivative), under
galilean transformations of π *The scalar part is similar to Galileons
but also significant differences from them



Quantum corrections: The nonlinear terms do not get
renormalized by quantum loops de Rham, GG, Heisenberg,
Pirtskhalava, 13 (see also de Rham, Heisenberg, Ribeiro 13)

L = −1
2
hµν Êαβµν hαβ + hµν

(
aX (1)

µν +
α

Λ3
3
X (2)
µν +

β

Λ6
3
X (3)
µν

)
Quantum loop calculations: due to specific structure of the vertices
loops do no renormalize a, α, β.

For the full theory, this implies that a choice of the value of m, and
the two parameters α and β, is technically natural.

However, the loops induce other terms. Effective field theory below
Λ3, needs completion above that scale (or a nonperturbative
method to make it calculable).



Superluminality vs. Acausality: In the high energy limit,
E , p >> m, the theory reduces to certain Galileons. Galileons in
general are known to lead to superluminal phase and group
velocities. For some parameter space there is no superuminality for
massive gravity Galileons, at least for the spherically symmetric
solutions due to specific nature of these theories:

−(∂π)2 +
πεε∂∂π∂∂π

m2Mpl
+
πεε∂∂π∂∂π∂∂π

m4M2
pl

(no cubic Galileon without the quartic one; special couplings to
matter, superluminal solutions unstable, L. Berezhiani, G.
Chkareuli, GG). However, in theories containing general Galileons
and their relatives, and for a generic parameter choice one finds
superluminal phase and group velocities. Does this mean that these
theories are acausal? Chronology protection due to strong coupling
Burrage, de Rham, L. Heisenberg, Tolley, ’11. (A)causality is
determined by the front velocity, which is affected by the strong
coupling regime’ more careful studies needed: Works to apear



A well-known example of GR + QED: Drummond Hathrell, ’80

LGR+QED = M2
pleR + e

(
−1
4
FF + ψ̄(i D̂ −me)ψ

)
A good effective theory below Mpl (other charged particles included
in the standard way).

At energies below the electron mass E , p << me , via one loop
vacuum polarization diagram one gets an effective theory

Leff = M2
ple(R + c

αem
m2

e

RFF )− e
1
4
FF · · ·

Among the RFF terms is RiemannFF term that renormalizes the
photon kinetic term in an external gravitational field (e.g., of the
Earth), and gives superluminal phase and group velocities.
However, this does not mean that LGR+QED gives a acausal theory,
in fact it gives a good causal effective theory below Mpl.
Reconciliation – extensive discussions by Hollowood and Shore



Cosmology of pure massive gravity. No flat FRW solution:
D’Amico, de Rham, Dubovsky, GG, Pirtskhalava, Tolley, ’11
Exception: Open FRW selfaccelerated universe, Gumrukcuoglu, Lin,
Mykohyama 11, regretfully, this is unstable
Pseudo-homogeneous selfaccelerated solutions: In the dec limit: de
Rham, GG, Heisenberg, Pirtskhalava. Exact solution: Koyama, Niz,
Tasinato (1,2,3), M. Volkov; L. Berezhiani, et al; ...
For instance, Koyama-Niz-Tasinato solution:

ds2 = −dτ2 + emτ (dρ2 + ρ2dΩ2)

while, φ0 and φρ, are inhomogeneous functions. Selfacceleration is
a generic feature of this theory, however, vanishing of the kinetic
terms for some of the 5 modes is also a common feature of these
solutions – too bad! Anisotropic solutions and fluctuations:
Gumrukcuoglu, Lin, Mukohyama, ’12.

Extensions beyond pure massive gravity are needed for cosmology,
they are needed anyway to deal with the strong coupling.



Theory of Quasi-Dilaton: D’Amico, GG, Hui, Pirtskhalava, ’12

Invariance of the action to rescaling of the reference frame
coordinates φa w.r.t. the physical space coordinates, xa, requires a
field σ. In the Einstein frame:

φa → eα φa, σ → σ − αMPl

Hence we can construct the invariant action by replacing K by K̄

K̄µ
ν = δµν −

√
gµαf̄αν f̄αν = e2σ/MPl∂αφ

a∂νφ
bηab

and adding the sigma kinetic term

L = LdRGT
(
K → K̄

)
− ω√g(∂σ)2

and the term
∫
d4x

√
−detf̄ can also be added. In the Einstein

frame σ does not couple to matter, but it does in the Jordan frame



Quasi-Dilaton: decoupling limit GG, Kimura, Pirtskhalava ’14

L = −1
2
hµν

(
Êh
)

µν

+ hµν
[
−1
2
εµενΠ + a2εµενΠΠ + a3εµενΠΠΠ

]

− ω∂µσ∂µσ + σ

[
εεΠ + ã2εεΠΠ + ã3εεΠΠΠ + ã4εεΠΠΠΠ

]
− 1

4

[
2εεBB + b2εεBBΠ− b3εεBBΠΠ + 2εεB2Π− 4a2εεB

2ΠΠ

−4a3εεB
2ΠΠΠ + 4εεB∂A− 16a2εεB∂AΠ− 24a3εεB∂AΠΠ

]
Both π and σ are Galileons: Shift symmetry of σ gets enhanced to
Galilean symmetry in the decoupling limit!
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Selfaccelerated solution with healthy perturbations
GG, Kimura, Pirtskhalava, ’14: The background solution – de
Sitter due to graviton mass; indistinguishable from cosm const
Perturbations are different though. Vector perturbations

Q1BµνB
µν + Q2BµνF

µν

Scalar perturbations

A1δπ̇
2 − A2(∂iδπ)2 + B1δπ̇δσ̇ − B2∂iδπ∂iδσ

No ghosts, tachyons, superluminalities, or gradient instabilities for

0 < ω < 54, sgn(a3) = sgn(q)
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Other developments and different extensions (subjective list):

Extended Quasidilaton: selfaccelerated solution with no ghosts (but
is above the strong scale). De Felice, Mukohyama, ’13;
Mukohyama, ’13; De Felice, Gumrukcuoglu, Mukohyama, ’13.

Bigravity: Hassan, R.A. Rosen, ’11, ... . Cosmology e.g., De Felice,
Gumrukcuoglu, Mukohyama, Tanahashi, Tanaka, 14 ....

Extended Massive Gravity: GG, Hinterbichler, Khoury, Pirtskhalava,
Trodden, 13; Gumrukcuoglu, Hinterbichler, Lin, Mukohyama,
Trodden 13

Black Hole solutions: Tasinato, Koyama, Niz ’11,12; Berezhiani,
Chkareuli, et al 12, M. S. Volkov 11,12,13, Babichev, Fabbri, 14,
Kodama, Arraut ’14

Interesting non-perturbative aspects: Sasaki, Yeom, Zhang, 12;
Park, Sorbo, 12; Zhang, Saito, Yeom, Sasaki, 13



Conclusions:
I A classical theory that extends GR by the mass and potential

term to a diff invariant non-linear theory of 5 degrees of
freedom of a massive spin-2, does exist.

I This is a strongly coupled theory with a low scale (compare
with the Electroweak theory without the Higgs mode), one
neededs to make it tangible above the strong scale. The issue
of (a)causality is entangled with the strong coupling issue.

I In the first order formulation the symmetry can be enhanced; a
good staring point to think of the completion.

I Generic cosmological solutions have no FRW symmetries, but
can approximate well FRW cosmologies.

I Selfaccelerated solutions emerge, but some fluctuations loose
kinetic terms, and this is not acceptable, thus extensions of
pure massive gravity are needed for this purpose too.

I A symmetry based extension – Quasi-dilaton. Has
selfaccelerated solutions with nonvanishing kinetic terms for all
the perturbations; no ghosts, no tachyons, no gradient
instability, no superluminality on this selfaccelerated solution.


