# Axion monodromy in warped throats



Angel M. Uranga IFT-UAM/CSIC, Madrid



In collaboration with S. Franco, D. Galloni, A. Retolaza, arXiv:1405.7044

c.f. Marchesano's talk

Planck 2014, Paris, May 2014

### Axion monodromy inflation

Silverstein, McAllister, Westphal, ...

- Recent interest in large field inflation (BICEP2)
- Scalars with shift symmetry (axions) are well protected continuous symmetry broken by non-pert effects to a discrete periodicity
- String theory axions have sub-Planckian decay constant

Axion monodromy: Potential is periodic but multivalued

Field theory analogue:
theta dependent vacuum energy
in large N pure gluodynamics Witten



#### New and better axion monodromy inflation

Marchesano, Shiu, A.U.

- Monodromy idea is nice, but early models are cumbersome
- Beautiful general framework "F-term axion monodromy" (although susy not crucial) c.f. Marchesano's talk
- A nice class: axions in flux compactifications

  10d Chern-Simons  $\Rightarrow$  modified field strengths

$$\int_{10d} B_2 \wedge F_p \wedge F_{p+2} \qquad \Rightarrow \qquad \tilde{F}_{p+2} = dC_{p+1} + B_2 \wedge F_p$$

Integrating over fluxed CY with  $\ \phi=\int_{\Sigma_2}B_2$  ,  $\ M=\int_{\Pi_p}F_p$ 

Change in axion induces extra flux

$$\Delta \phi \to \Delta \int_{\Sigma_2 \times \Pi_p} \tilde{F}_{p+2} = \phi M$$

#### New and better axion monodromy inflation

Marchesano, Shiu, A.U.



A nice class: axions in flux compactifications

Change in axion induces extra flux

$$\Delta \phi \to \Delta \int_{\Sigma_2 \times \Pi_p} \tilde{F}_{p+2} = \phi M$$

Kinetic term for (p+2)-form leads to  $V \sim m^2 \phi^2$ 

$$V \sim m^2 \phi^2$$

Alternative effective field theory, contact with Kaloper, Sorbo,

$$\int_{10d} B_2 F_p F_{p+2} \to \int_{4d} M \, \phi \, F_4$$





Monodromy

Multiple branches connected by domain walls changing (p+2)-form flux. They are D(6-p) on (4-p)-cycle

#### Scales and warped throats

Fluxes enter into moduli stabilization and inflaton potential Require mild hierarchy between the two scales

Explore use of warped throats



Randall, Sundrum; Verlinde; Klebanov, Strassler; Giddings, Kachru, Polchinski

$$m_{\rm IR} \sim M_{\rm UV} e^{-\frac{2K}{3Mg_s}}$$

Need throats with 2- and 3-cycles at its bottom

#### More general throats Franco, Hanany, A.U.



Use toric geometry and geometric transitions

Ex: resolved conifold ⇒ deformed conifold



Generalization: e.g. dP3



Axion monodromy increases the flux in 5d base of CY cone

#### Holographic dual

Franco, Hanany, A.U.

Warped throat have a holographic field theory dual Toric geometries ⇒ Brane tilings / dimer diagrams

Obtained from fractional D3-branes on the "resolved" side



Regular D3s (equal ranks): conformal theory, dual to AdS5
Fractional D3s (diff. ranks): RG is a Seiberg duality cascade

IR theory has complex deformed moduli space Klebanov, Strassler

D5s wrapped on 2-cycles turn into F3 flux on 3-cycles

## Axion monodromy as Seiberg duality

Franco, Galloni, Retolaza, A.U.

- Axion is dual to gauge coupling of some gauge factor
- Axion monodromy is dual to a chain of Seiberg dualities increasing the overall number of D3-branes



Obs: monodromy cascade is different from RG cascade

### The type IIA picture

 $\int_{10d} F_2 \wedge B_2 \wedge F_6 \rightarrow M \int_{4d} \phi F_4$ 

Need throats with only 2-cycles at its bottom: "resolved"

Can be obtained from geometries with 2- and 3-cycles via geometric transitions



D6s wrapped on 3-cycles turn into F2 flux on 2-cycles Vafa

Easier to embed in global compactifications

No need of 1-cycles

#### Inflation and conclusions

- Chaotic inflation below bulk scales
- Can accommodate higher powers

Marchesano, Shiu, A.U; McAllister, Silverstein, Westphal, Wrase

- Interesting field theory dual picture
  A bit like theta angle in large N gluodynamics
- Local approach: subsequent global embedding, SM, ...
- Open questions in axion monodromy:

Susy and the saxion

Backreaction of flux, and maximum field range

Reheating

Thank you!