Planck 2014, Paris, 29 May 2014

DARK RADIATION IN GENERAL LARGE VOLUME SCENARIOS

Lukas Witkowski

based on arXiv:1403.6810 with Arthur Hebecker, Patrick Mangat and Fabrizio Rompineve

- Dark Radiation (DR): Extra relativistic hidden species.
 Natural extension of LCDM.
- Typically parameterised by ΔN_e

$$\Delta N_{eff} = N_{eff} - 3.046$$

• Experiment:

 $N_{eff} = 3.30^{+0.54}_{-0.51} \text{ (95\% CL, PI+WP+high L+BAO)}$ $N_{eff} = 3.52^{+0.48}_{-0.45} \text{ (95\% CL, PI+WP+high L+BAO+H0)}$

[Planck Collaboration 1303.5076]

String Theory:
 In certain class of string models DR unavoidable
 DR can constrain / rule out string models

- Dark Radiation (DR): Extra relativistic hidden species.
 Natural extension of LCDM.
- Typically parameterised by $\Delta N_{eff} =$

$$\Delta N_{eff} = N_{eff} - 3.046$$

• Experiment:

 $N_{eff} = 3.30^{+0.54}_{-0.51} \text{ (95\% CL, PI+WP+high L+BAO)}$ $N_{eff} = 3.52^{+0.48}_{-0.45} \text{ (95\% CL, PI+WP+high L+BAO+H0)}$

[Planck Collaboration 1303.5076]

String Theory:
 In certain class of string models DR unavoidable
 DR can constrain / rule out string models

- I. String compactifications contain many scalars fields with gravitational-strength couplings (= moduli).
- II. During inflation: scalars displaced from minimum. After inflation: oscillate in potential as DM.
- III. Matter scales as a^{-3} , radiation scales as a^{-4} . Lightest scalar ϕ will dominate energy density.

- IV. Decay of ϕ :
 - reheat SM through decays $\phi \rightarrow visible$.
 - If DR candidate present ϕ can also decay to DR.

- I. String compactifications contain many scalars fields with gravitational-strength couplings (= moduli).
- II. During inflation: scalars displaced from minimum. After inflation: oscillate in potential as DM.
- III. Matter scales as a^{-3} , radiation scales as a^{-4} . Lightest scalar ϕ will dominate energy density. Large Volume Scenario: ϕ typically volume saxion. (see however S. Angus' talk)

IV. Decay of ϕ :

- reheat SM through decays $\phi \rightarrow visible$.

MOTIVATION: GENERATION OF DR

DR prediction:

$$\Delta N_{eff} = \left. \frac{\rho_{DR}}{\rho_{\nu 1}} \right|_{\nu \text{ decoupling}} = \frac{43}{7} \left(\frac{10.75}{g_*(T_{RH})} \right)^{1/3} \left. \frac{\rho_{DR}}{\rho_{SM}} \right|_{T=T_{RH}}$$
$$= \frac{43}{7} \left(\frac{10.75}{g_*(T_{RH})} \right)^{1/3} \frac{\Gamma_{\phi \to DR}}{\Gamma_{\phi \to SM}}$$

MOTIVATION: GENERATION OF DR

DR prediction:

$$\Delta N_{eff} = \left. \frac{\rho_{DR}}{\rho_{\nu 1}} \right|_{\nu \text{ decoupling}} = \frac{43}{7} \left(\frac{10.75}{g_*(T_{RH})} \right)^{1/3} \left. \frac{\rho_{DR}}{\rho_{SM}} \right|_{T=T_{RH}}$$
$$= \frac{43}{7} \left(\frac{10.75}{g_*(T_{RH})} \right)^{1/3} \frac{\Gamma_{\phi \to DR}}{\Gamma_{\phi \to SM}}$$

 Large Volume Scenario (LVS): scheme to stabilise K\u00e4hler moduli, and in particular volume of extra dimensions by perturbative and non-perturbative corrections.

Kähler moduli: complex scalars $T = \tau + ia$.

- au parameterises volumes of internal 4-cycle.
- a is an axion-like particle (ALP).
- Have a shift-symmetry: $T \to T + i\epsilon$.

LVS:

- lightest modulus: au_b
- DR candidate: a_b

$$m_{\tau_b} \sim \frac{M_{pl}}{\mathcal{V}^{3/2}} \qquad m_{a_b} \sim M_{pl} \ e^{-\mathcal{V}^{2/3}} \simeq 0$$

• Decays into DR: $K = -2 \ln \mathcal{V} = -\ln (T_b + \bar{T}_b)^{3/2} + ...$

$$\Rightarrow \Gamma_{\tau_b \to a_b a_b} = \frac{1}{48\pi} \frac{m_{\tau_b}^3}{M_{pl}^2}$$

always present in LVS.

$$\Delta N_{eff} = \frac{43}{7} \left(\frac{10.75}{g_*(T_d)} \right)^{1/3} \frac{\Gamma_{\tau_b \to DR}}{\Gamma_{\tau_b \to vis}}$$

• Decays into DR: $K = -2 \ln \mathcal{V} = -\ln (T_b + \bar{T}_b)^{3/2} + ...$

$$\Rightarrow \Gamma_{\tau_b \to a_b a_b} = \frac{1}{48\pi} \frac{m_{\tau_b}^3}{M_{pl}^2}$$

always present in LVS.

$$\Delta N_{eff} = \frac{43}{7} \left(\frac{10.75}{g_*(T_d)} \right)^{1/3} \frac{\Gamma_{\tau_b \to DR}}{\Gamma_{\tau_b \to vis}}$$

So far:

Cicoli, Conlon, Quevedo	1208.3562;
Higaki, F.Takahashi	1208.3563;
Angus, Conlon, Haisch, Powell	305.4 28;
Higaki, Nakayama, F.Takahashi	1304.7987;
Allahverdi, Cicoli, Dutta, Sinha	40 .4364
Angus	1403.6473

• Decays into DR: $K = -2 \ln \mathcal{V} = -\ln (T_b + \bar{T}_b)^{3/2} + ...$

$$\Rightarrow \Gamma_{\tau_b \to a_b a_b} = \frac{1}{48\pi} \frac{m_{\tau_b}^3}{M_{pl}^2}$$

always present in LVS.

$$\Delta N_{eff} = \frac{43}{7} \left(\frac{10.75}{g_*(T_d)} \right)^{1/3} \frac{\Gamma_{\tau_b \to DR}}{\Gamma_{\tau_b \to vis}}$$

Here: how small can ΔN_{eff} be in LVS?

- Low $\Delta N_{eff} = \text{high } \Gamma_{\tau_b \to vis}$
- How large can $\Gamma_{\tau_b \to vis}$ be (for minimal visible sector)?

• Decays into DR: $K = -2 \ln \mathcal{V} = -\ln (T_b + \bar{T}_b)^{3/2} + ...$

$$\Rightarrow \Gamma_{\tau_b \to a_b a_b} = \frac{1}{48\pi} \frac{m_{\tau_b}^3}{M_{pl}^2}$$

always present in LVS.

$$\Delta N_{eff} = \frac{43}{7} \left(\frac{10.75}{g_*(T_d)} \right)^{1/3} \frac{\Gamma_{\tau_b \to DR}}{\Gamma_{\tau_b \to vis}}$$

Here: how small can ΔN_{eff} be in LVS?

- Low $\Delta N_{eff} = \text{high } \Gamma_{\tau_b \to vis}$
- How large can $\Gamma_{\tau_b \to vis}$ be (for minimal visible sector)?

• Decays into DR: $K = -2 \ln \mathcal{V} = -\ln (T_b + \bar{T}_b)^{3/2} + ...$

$$\Rightarrow \Gamma_{\tau_b \to a_b a_b} = \frac{1}{48\pi} \left(\frac{m_{\tau_b}^3}{M_{pl}^2} \right)$$

always present in LVS.

$$\Delta N_{eff} = \frac{43}{7} \left(\frac{10.75}{g_*(T_d)} \right)^{1/3} \frac{\Gamma_{\tau_b \to DR}}{\Gamma_{\tau_b \to vis}}$$

Here: how small can ΔN_{eff} be in LVS?

- Low $\Delta N_{eff} = \text{high } \Gamma_{\tau_b \to vis}$
- How large can $\Gamma_{\tau_b \to vis}$ be (for minimal visible sector)?

- Gauge bosons: $\Gamma_{\tau \to AA} = \frac{N_g}{128\pi} \frac{\left|\partial_T f\right|^2}{\left(\operatorname{Re} f\right)^2 K_{T\bar{T}}} \frac{m_{\tau}^3}{M_{pl}^2}$
- Higgs: from $K \supset K_{H\bar{H}}(T_i, \bar{T}_i) \left[H_u \bar{H}_u + H_d \bar{H}_d + (zH_u H_d + \text{c.c.}) \right]$ get $\Gamma_{\tau \to H_u H_d} = \frac{z^2}{8\pi} \frac{(\partial_T K_{H\bar{H}})^2}{K_{H\bar{H}}^2 K_{T\bar{T}}} \frac{m_\tau^3}{M_{pl}^2}$
- SM fermions: from $K \supset K_{i\bar{j}}C^i\bar{C}^{\bar{j}}$ get $\Gamma_{\tau \to f\bar{f}} \sim \frac{m_f^2 m_{\tau}}{M_{nl}^2}$

SUSY scalars:
$$\Gamma_{\tau \to \tilde{q}\bar{\tilde{q}},\tilde{l}\bar{\tilde{l}}} \sim \frac{m_{soft}^2 m_{\tau}}{M_{pl}^2}$$
 gauginos,
higgsinos: $\Gamma_{\tau \to \lambda\lambda,\tilde{h}\tilde{h}} \sim \frac{m_{\lambda,\tilde{h}}^2 m_{\tau}}{M_{pl}^2}$

• Gauge bosons:
$$\Gamma_{\tau \to AA} = \frac{N_g}{128\pi} \frac{|\partial_T f|^2}{(\text{Re } f)^2 K_{T\bar{T}}} \begin{pmatrix} m_{\tau}^3 \\ M_{pl}^2 \end{pmatrix}$$

• Higgs: from $K \supset K_{H\bar{H}}(T_i, \bar{T}_i) \left[H_u \bar{H}_u + H_d \bar{H}_d + (zH_u H_d + c.c.) \right]$ get $\Gamma_{\tau \to H_u H_d} = \frac{z^2}{8\pi} \frac{\left(\partial_T K_{H\bar{H}}\right)^2}{K_{H\bar{H}}^2 K_{T\bar{T}}} \frac{m_{\tau}^3}{M_{pl}^2}$

• SM fermions: from
$$K \supset K_{i\bar{j}}C^i\bar{C}^{\bar{j}}$$
 get $\Gamma_{\tau \to f\bar{f}} \sim \frac{m_f^2 m_{\tau}}{M_{pl}^2}$

SUSY scalars:
$$\Gamma_{\tau \to \tilde{q}\bar{\tilde{q}}, \tilde{l}\bar{\tilde{l}}} \sim \frac{m_{soft}^2 m_{\tau}}{M_{pl}^2}$$
 gauginos, $\Gamma_{\tau \to \lambda\lambda, \tilde{h}\tilde{h}} \sim \frac{m_{\lambda, \tilde{h}}^2 m_{\tau}}{M_{pl}^2}$

- Gauge bosons: $\Gamma_{\tau \to AA} = \frac{N_g}{128\pi} \frac{\left|\partial_T f\right|^2}{\left(\operatorname{Re} f\right)^2 K_{T\bar{T}}} \frac{m_{\tau}^3}{M_{pl}^2}$
- Higgs: from $K \supset K_{H\bar{H}}(T_i, \bar{T}_i) \left[H_u \bar{H}_u + H_d \bar{H}_d + (zH_u H_d + c.c.) \right]$ get $\Gamma_{\tau \to H_u H_d} = \frac{z^2}{8\pi} \frac{\left(\partial_T K_{H\bar{H}}\right)^2}{K_{H\bar{H}}^2 K_{T\bar{T}}} \frac{m_{\tau}^3}{M_{pl}^2}$
- SM fermions: from $K \supset K_{i\bar{j}}C^i\bar{C}^{\bar{j}}$ get $\Gamma_{\tau \to f\bar{f}} \sim \frac{m_f^2 m_{\tau}}{M_{pl}^2}$

SUSY scalars:
$$\Gamma_{\tau \to \tilde{q}\bar{\tilde{q}},\tilde{l}\bar{\tilde{l}}} \sim \frac{m_{soft}^2 m_{\tau}}{M_{pl}^2}$$
 gauginos,
higgsinos: $\Gamma_{\tau \to \lambda\lambda,\tilde{h}\tilde{h}} \sim \frac{m_{\lambda,\tilde{h}}^2 m_{\tau}}{M_{pl}^2}$

• Gauge bosons: $\Gamma_{\tau \to AA} = \frac{N_g}{128\pi} \frac{\left|\partial_T f\right|^2}{\left(\operatorname{Re} f\right)^2 K_{T\bar{T}}} \frac{m_{\tau}^3}{M_{pl}^2}$

• Higgs: from $K \supset K_{H\bar{H}}(T_i, \bar{T}_i) \left[H_u \bar{H}_u + H_d \bar{H}_d + (zH_u H_d + \text{c.c.}) \right]$ get $\Gamma_{\tau \to H_u H_d} = \frac{z^2}{8\pi} \frac{\left(\partial_T K_{H\bar{H}}\right)^2}{K_{H\bar{H}}^2 K_{T\bar{T}}} \left(\frac{m_\tau^3}{M_{pl}^2}\right)$

• SM fermions: from $K \supset K_{i\bar{j}}C^i\bar{C}^{\bar{j}}$ get $\Gamma_{\tau \to f\bar{f}} \sim \frac{m_f^2 m_{\tau}}{M_{rl}^2}$

SUSY scalars:
$$\Gamma_{\tau \to \tilde{q}\tilde{\tilde{q}}, \tilde{l}\tilde{\tilde{l}}} \sim \frac{m_{soft}^2 m_{\tau}}{M_{pl}^2}$$
 gauginos,
higgsinos: $\Gamma_{\tau \to \lambda\lambda, \tilde{h}\tilde{h}} \sim \frac{m_{\lambda, \tilde{h}}^2 m_{\tau}}{M_{pl}^2}$

- Gauge bosons: $\Gamma_{\tau \to AA} = \frac{N_g}{128\pi} \frac{\left|\partial_T f\right|^2}{\left(\operatorname{Re} f\right)^2 K_{T\bar{T}}} \frac{m_{\tau}^3}{M_{pl}^2}$
- Higgs: from $K \supset K_{H\bar{H}}(T_i, \bar{T}_i) \left[H_u \bar{H}_u + H_d \bar{H}_d + (zH_u H_d + c.c.) \right]$ get $\Gamma_{\tau \to H_u H_d} = \frac{z^2}{8\pi} \frac{\left(\partial_T K_{H\bar{H}}\right)^2}{K_{H\bar{H}}^2 K_{T\bar{T}}} \frac{m_{\tau}^3}{M_{pl}^2}$
- SM fermions: from $K \supset K_{i\bar{j}}C^i\bar{C}^{\bar{j}}$ get $\Gamma_{\tau \to f\bar{f}} \sim \frac{m_f^2 m_{\tau}}{M_{rl}^2}$

SUSY scalars:
$$\Gamma_{\tau \to \tilde{q}\tilde{\tilde{q}},\tilde{l}\tilde{l}} \sim \frac{m_{soft}^2 m_{\tau}}{M_{pl}^2}$$
 gauginos,
higgsinos: $\Gamma_{\tau \to \lambda\lambda,\tilde{h}\tilde{h}} \sim \frac{m_{\lambda,\tilde{h}}^2 m_{\tau}}{M_{pl}^2}$

- Gauge bosons: $\Gamma_{\tau \to AA} = \frac{N_g}{128\pi} \frac{\left|\partial_T f\right|^2}{\left(\operatorname{Re} f\right)^2 K_{T\bar{T}}} \frac{m_{\tau}^3}{M_{pl}^2}$
- Higgs: from $K \supset K_{H\bar{H}}(T_i, \bar{T}_i) \left[H_u \bar{H}_u + H_d \bar{H}_d + (zH_u H_d + c.c.) \right]$ get $\Gamma_{\tau \to H_u H_d} = \frac{z^2}{8\pi} \frac{\left(\partial_T K_{H\bar{H}}\right)^2}{K_{H\bar{H}}^2 K_{T\bar{T}}} \frac{m_{\tau}^3}{M_{pl}^2}$
- SM fermions: from $K \supset K_{i\bar{j}}C^i\bar{C}^{\bar{j}}$ get $\Gamma_{\tau \to f\bar{f}} \sim \frac{m_f^2 m_{\tau}}{M_{rl}^2}$
- SUSY partners:

SUSY scalars:
$$\Gamma_{\tau \to \tilde{q}\bar{\tilde{q}},\tilde{l}\bar{\tilde{l}}} \sim \frac{m_{soft}^2 m_{\tau}}{M_{pl}^2}$$
 gauginos, $\Gamma_{\tau \to \lambda\lambda,\tilde{h}\tilde{h}} \sim \frac{m_{\lambda,\tilde{h}}^2 m_{\tau}}{M_{pl}^2}$

Gauge bosons:

$$\Gamma_{\tau \to AA} = \frac{N_g}{128\pi} \frac{\left|\partial_T f\right|^2}{\left(\operatorname{Re} f\right)^2 K_{T\bar{T}}} \frac{m_{\tau}^3}{M_{pl}^2}$$

• Higgs: from $K \supset K_{H\bar{H}}(T_i, \bar{T}_i) \left[H_u \bar{H}_u + H_d \bar{H}_d + (zH_u H_d + c.c.) \right]$ get $\Gamma_{\tau \to H_u H_d} = \frac{z^2}{8\pi} \frac{(\partial_T K_{H\bar{H}})^2}{K_{H\bar{H}}^2 K_{T\bar{T}}} \frac{m_{\tau}^3}{M_{pl}^2}$

• SM fermions: from $K \supset K_{i\bar{j}}C^i\bar{C}^{\bar{j}}$ get $\Gamma_{\tau \to f\bar{f}} \sim \frac{m_f^2 m_{\tau}}{M_{rl}^2}$

SUSY scalars:
$$\Gamma_{\tau \to \tilde{q}\tilde{\tilde{q}},\tilde{l}\tilde{l}} \sim \frac{m_{soft}^2 m_{\tau}}{M_{pl}^2}$$
 gauginos,
higgsinos: $\Gamma_{\tau \to \lambda\lambda,\tilde{h}\tilde{h}} \sim \frac{m_{\lambda,\tilde{h}}^2 m_{\tau}}{M_{pl}^2}$

D3-branes at singularity give chiral matter.

Lightest modulus: $\tau_b = \operatorname{Re} T_b$. DR candidate $a_b = \operatorname{Im} T_b$

D3-branes at singularity give chiral matter.

Lightest modulus: $\tau_b = \operatorname{Re} T_b$. DR candidate $a_b = \operatorname{Im} T_b$

D3-branes at singularity give chiral matter.

Lightest modulus: $au_b = \operatorname{Re} T_b$. DR candidate $a_b = \operatorname{Im} T_b$

• Gauge kinetic function $f_{D3} = S$ independent of T_b . No decays of τ_b into gauge bosons. Can we do better?

D7-branes wrap 4-cycle associated with modulus T_{vis} . Stabilise $\tau_{vis} = \text{Re } T_{vis}$ in geometric regime by

- String loop-corrections: ALP $a_{vis} = \text{Im } T_{vis}$ remains light — — — more DR.
- Non-perturbative effects: Tension between n.p. effect and visible sector. DR overproduction slightly ameliorated w.r.t. above.

• D-terms:

Lightest saxion can decay into both Higgs and gauge bosons. Study this case in more detail.

D7-branes wrap 4-cycle associated with modulus T_{vis} . Stabilise $\tau_{vis} = \text{Re } T_{vis}$ in geometric regime by

- String loop-corrections: ALP $a_{vis} = \text{Im } T_{vis}$ remains light — — — more DR.
- Non-perturbative effects: Tension between n.p. effect and visible sector. DR overproduction slightly ameliorated w.r.t. above.

• D-terms:

Lightest saxion can decay into both Higgs and gauge bosons. Study this case in more detail.

Incompatible with TeV SUSY to avoid Cosmological Moduli Problem as $m_{soft} \sim M_{1/2} \sim A_{ijk} \sim m_{3/2}$.

VISIBLE SECTOR - D-TERM STABILISATION

D7-branes wrap 4-cycle associated with modulus T_{vis} .

Lightest modulus: $\tau_b = \operatorname{Re} T_b$. DR candidate $a_b = \operatorname{Im} T_b$

VISIBLE SECTOR - D-TERM STABILISATION

D7-branes wrap 4-cycle associated with modulus T_{vis} .

Lightest modulus: $au_b = \operatorname{Re} T_b$. DR candidate $a_b = \operatorname{Im} T_b$

• D-terms fix ratios of 2-cycles fix ratios of 4-cycles:

$$\Rightarrow T_{vis} = c \ T_b$$

- gauge kinetic function: $f_{vis} = T_{vis} + hS = cT_b + hS$
- Higgs Kähler metric: $K_{H\bar{H}} = \frac{(T_{vis} + \bar{T}_{vis})^{1/2}}{T_b + \bar{T}_b} = \frac{1}{(T_b + \bar{T}_b)^{1/2}}$
- After integrating out T_{vis} : $\mathcal{V} = \alpha (T_b + \bar{T}_b)^{3/2} \gamma_i (T_{s_i} + \bar{T}_{s_i})^{3/2}$

- gauge kinetic function: $f_{vis} = T_{vis} + hS = cT_b + hS$
- Higgs Kähler metric: $K_{H\bar{H}} = \frac{(T_{vis} + \bar{T}_{vis})^{1/2}}{T_b + \bar{T}_b} = \frac{1}{(T_b + \bar{T}_b)^{1/2}}$
- After integrating out T_{vis} : $\mathcal{V} = \alpha (T_b + \bar{T}_b)^{3/2} \gamma_i (T_{s_i} + \bar{T}_{s_i})^{3/2}$

Dominant decay rates:

Decays into DR: $\Gamma_{\tau_b \to a_b a_b} = \frac{1}{48\pi} \frac{m_{\tau_b}^3}{M_P^2} ,$ Decays into SM: $\Gamma_{\tau_b \to hh} = \frac{z^2}{96\pi} \frac{\sin^2(2\beta)}{2} \frac{m_{\tau_b}^3}{M_P^2} ,$ $\gamma \equiv \frac{\tau_{vis}}{\tau_{vis} + h \operatorname{Re}(S)} \qquad \Gamma_{\tau_b \to AA} = \frac{N_g}{96\pi} \gamma^2 \frac{m_{\tau_b}^3}{M_P^2}$

• DR prediction:

$$\begin{split} \Gamma_{\tau_b \to a_b a_b} &= \frac{1}{48\pi} \frac{m_{\tau_b}^3}{M_P^2} ,\\ \Gamma_{\tau_b \to hh} &= \frac{z^2}{96\pi} \frac{\sin^2(2\beta)}{2} \frac{m_{\tau_b}^3}{M_P^2} ,\\ \Gamma_{\tau_b \to AA} &= \frac{N_g}{96\pi} \gamma^2 \frac{m_{\tau_b}^3}{M_P^2} \end{split}$$

$$\gamma \equiv \frac{\tau_{vis}}{\tau_{vis} + h \operatorname{Re}(S)}$$

Contour plot of ΔN_{eff}

Z

CONCLUSION

- I. DR is a generic prediction of LVS string models.
- 2. Limits on ΔN_{eff} can be used to rule out many realisations of visible sectors in LVS setups.
- 3. Current limits on ΔN_{eff} can be satisfied with minimal matter content (MSSM) and for "natural" values of parameters. Incompatible with TeV SUSY.
- 4. DR bounds relaxed
 - if matter sector is extended: extra Higgs doublets...
 - if flavour branes are present

CONCLUSION

- I. DR is a generic prediction of LVS string models.
- 2. Limits on ΔN_{eff} can be used to rule out many realisations of visible sectors in LVS setups.
- 3. Current limits on ΔN_{eff} can be satisfied with minimal matter content (MSSM) and for "natural" values of parameters. Incompatible with TeV SUSY.
- 4. DR bounds relaxed
 - if matter sector is extended: extra Higgs doublets...
 - if flavour branes are present

Merci beaucoup!