Light non-degenerate composite quark partners at the LHC

Thomas Flacke

C. Delaunay, TF, J. Gonzales-Fraile, S.J. Lee, G. Panico, G. Perez [JHEP 02 (2014) 055] TF, Jeong Han Kim, Seung Joon Lee, Sung Hak Lim [arXiv:1312.5316] TF, Sang Eun Han, Jeong Han Kim, Seung Joon Lee in preparation

PLANCK 2014

Outline

- Motivation
- The general setup: minimal composite Higgs from SO(5)/SO(4) breaking
- Partially composite quarks
 - The Lagrangian
 - Partners in the SO(4) fourplet
 - Partners in the SO(4) singlet
 - Singlet and fourplet partners: how generic are pure fourplet constraints?
- Conclusions and Outlook

Motivation

- C Atlas and CMS found a Higgs-like resonance with a mass m_h ~ 126 GeV and couplings to γγ, WW, ZZ, bb, and ττ compatible with the standard model Higgs.
- 🙂 The standard model suffers from the hierarchy problem.
- \Rightarrow Search for an SM extension with a Higgs-like state which provides an explanation for why m_h , $v \ll M_{pl}$.
- One possible solution: Composite Higgs Models (CHM)
 - Consider a model which gets strongly coupled at a scale $f \sim O(1 \text{ TeV})$. \rightarrow naturally obtain $f \ll M_{pl}$.
 - Assume a global symmetry which is spont. broken by dim. transmutation.
 → strongly coupled resonances at *f* and Goldstone bosons (to be identified with the Higgs sector).
 - Assume that the only source of explicit symmetry breaking arises from Yukawa-type interactions.
 - \rightarrow The Higgs-like particles become pseudo-Goldstone bosons
 - \Rightarrow Naturally generates a scale hierarchy $v \sim m_h \ll f \ll M_{pl}$.

Motivation

Partially composite quarks Conclusions and Outlook Backup

Composite Higgs model: general setup

Simplest realization:

The minimal composite Higgs model (MCHM) Agashe, Contino, Pomarol [2004] Effective field theory based on $SO(5) \rightarrow SO(4)$ global symmetry breaking.

- The Goldstone bosons live in $SO(5)/SO(4) \rightarrow 4$ d.o.f.
- SO(4) ≃ SU(2)_L × SU(2)_R Gauging SU(2)_L yields an SU(2)_L Goldstone doublet. Gauging T³_R assigns hyper charge to it. Later: Include a global U(1)_X and gauge Y = T³_R + X.
 ⇒ Correct quantum numbers for the Goldstone bosons to be identified as a non-linear realization of the Higgs doublet.

We use the CCWZ construction to construct the low-energy EFT. Coleman, Wess, Zumino [1969], Callan, Coleman [1969]

Central element: the Goldstone boson matrix

$$U(\Pi) = \exp\left(\frac{i}{f}\Pi_{i}T^{i}\right) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & \cos\overline{h}/f & \sin\overline{h}/f\\ 0 & 0 & 0 & -\sin\overline{h}/f & \cos\overline{h}/f \end{pmatrix},$$

where $\Pi = (0, 0, 0, \overline{h})$ with $\overline{h} = \langle h \rangle + h$ and T^{i} are the broken *SO*(5) generators.

From it, one can construct the CCWZ d^i_μ and e^a_μ symbols *E. g.* kinetic term for the "Higgs":

$$\mathcal{L}_{\Pi} = \frac{f^2}{4} d^{i}_{\mu} d^{i\mu} = \frac{1}{2} \left(\partial_{\mu} h \right)^2 + \frac{g^2}{4} f^2 \sin^2 \left(\frac{\overline{h}}{f} \right) \left(W_{\mu} W^{\mu} + \frac{1}{2c_w} Z_{\mu} Z^{\mu} \right)$$
$$\Rightarrow v = 246 \text{ GeV} = f \sin \left(\frac{\langle h \rangle}{f} \right) \equiv f \sin(\epsilon).$$

Note: In the above, the Higgs multiplet is parameterized as a Goldstone multiplet and it is *assumed* that a Higgs potential is induced which leads to EWSB.

Concrete realizations c.f. e.g. Review by Contino [2010], Panico et al. [2012], ...:

Couplings of the Higgs to the quark sector (most importantly to the top) explicitly break the SO(5) symmetry

 \Rightarrow couplings to the top sector induce an effective potential for the Higgs which induces EWSB.

Partners in the fourplet Partner in the singlet

How to include the quarks?

In the SM, the Higgs multiplet

- induces EWSB (✓ in CHM),
- provides a scalar degree of freedom (✓ in CHM),
- generates fermion masses via Yukawa terms (← implementation in CHM?).

One solution [Kaplan (1991)]: Include elementary fermions q as incomplete linear reps of SO(5) which couple to the strong sector via

 $\mathcal{L}_{mix} = y \overline{q}_{I_{\mathcal{O}}} \mathcal{O}^{I_{\mathcal{O}}} + \text{h.c.}$

where \mathcal{O} is an operator of the strongly coupled theory in the rep. $I_{\mathcal{O}}$. Note: The Goldstone matrix $U(\Pi)$ non-linearly under SO(5), but linear under the SO(4) subgroup $\rightarrow \mathcal{O}^{I_{\mathcal{O}}}$ has the form $f(U(\Pi))\mathcal{O}'_{fermion}$.

Simplest choice for quark embedding:

$$q_{L}^{5} = \frac{1}{\sqrt{2}} \begin{pmatrix} id_{L} \\ d_{L} \\ iu_{L} \\ -u_{L} \\ 0 \end{pmatrix}, \quad u_{R}^{5} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ u_{R} \end{pmatrix}, \quad \psi = \begin{pmatrix} Q \\ \tilde{U} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} iD - iX_{5/3} \\ D + X_{5/3} \\ iU + iX_{2/3} \\ -U + X_{2/3} \\ \sqrt{2}\tilde{U} \end{pmatrix}$$

Partners in the fourplet Partner in the singlet

BSM particle content:

	U	X _{2/3}	D	<i>X</i> _{5/3}	Ũ
<i>SO</i> (4)	4	4	4	4	1
<i>SU</i> (3) _c	3	3	3	3	3
$U(1)_X$ charge	2/3	2/3	2/3	2/3	2/3
EM charge	2/3	2/3	-1/3	5/3	2/3

Fermion Lagrangian:

$$\mathcal{L}_{comp} = i \,\overline{Q} (D_{\mu} + i e_{\mu}) \gamma^{\mu} Q + i \overline{\tilde{U}} \overline{\mathcal{D}} \widetilde{U} - M_{4} \overline{Q} Q - M_{1} \overline{\tilde{U}} \widetilde{U} + \left(i c \overline{Q}^{i} \gamma^{\mu} d_{\mu}^{i} \widetilde{U} + \text{h.c.} \right),$$

$$\mathcal{L}_{el,mix} = i \,\overline{q}_{L} \overline{\mathcal{D}} q_{L} + i \,\overline{u}_{R} \overline{\mathcal{D}} u_{R} - y_{L} f \overline{q}_{L}^{5} U_{gs} \psi_{R} - y_{R} f \overline{u}_{R}^{5} U_{gs} \psi_{L} + \text{h.c.},$$

Derivation of Feynman rules:

- expand d_{μ} , e_{μ} , U_{gs} around $\langle h \rangle$,
- · diagonalize the mass matrices,
- match the lightest up-type mass with the SM quark mass \rightarrow this fixes y_L in terms of the other parameters ($y_R \sim 1 \Rightarrow y_L \ll 1$)
- calculate the couplings in the mass eigenbasis.

Partners in the fourplet Partner in the singlet

Partners in the fourplet

Lets first consider the limit $M_1 \to \infty$.

 \tilde{U} decouples, and the remaining quark partners form a 4 of SO(4).

Mass eigenstates:

 $U_{p/m} = (1/\sqrt{2}) (U \pm X_{2/3}), D, X_{5/3}.$

Masses:

$$m_{U_{\rho}} = m_D = m_{X_{5/3}} = M_4, m_{U_m} = \sqrt{M_4^2 + (y_R f \sin(\epsilon))^2}, \text{ with } \epsilon = \langle h \rangle / f.$$

"Mixing" couplings:

$$g_{WuX} = -g_{WuD} = -c_w g_{ZuU_p} = \frac{g}{2} \cos \epsilon \sin \varphi_4,$$
$$\lambda_{huU_m} = y_R \cos \epsilon \cos \varphi_4.$$

with

$$\tan\varphi_4\equiv\frac{y_Rf\sin\epsilon}{M_4}.$$

Partners in the fourplet Partner in the singlet

Partners in the fourplet

Production mechanisms (shown here: $X_{5/3}$ production)

(b) EW pair production

(a) EW single production Decays:

- $X_{5/3} \to W^+ u$ (100%),
- $D \to W^- u$ (100%),
- *U_p* → *Zu* (100%),
- $U_m \rightarrow hu$ (100%).

(c) QCD pair production

Partners in the fourplet Partner in the singlet

NOTE:

- The EW production mechanisms strongly differs for 1st, 2nd, and 3rd generation partners due to the differing PDFs for *u*, *c*, *t* in the proton.
- The final states (search signatures) differ:
 - 1st generation partners: u, d quarks in the final state \rightarrow jets.
 - 2nd generation partners: $c, s \rightarrow$ jets, potentially tagable c in the future
 - 3nd generation partners: $t, b \rightarrow$ well distinguishable from jets

We focus on 1st and 2nd family partners.

c.f. [Rattazzi et al. (2012)] for top partners.

c.f. [TF, S.E. Han, J.H. Kim, S.J. Lee, (to appear soon)] for bottom partners.

\rightarrow relevant measured final states:

• Single production: Wjj, Zjj

[D0 Collaboration], Phys. Rev. Lett. 106, 081801 (2011) [CDF Collaboration], CDF/PUB/EXOTIC/PUBLIC/1026 [ATLAS Collaboration], ATLAS-CONF-2012-137 (4.64 tb^{-1} 7 TeV) [CMS Collaboration], CMS-PAS-EXO-12-024 (19.8 tb^{-1} 8 TeV)

• Pair production: WWjj, ZZjj

[D0 Collaboration], Phys. Rev. Lett. 107, 082001 (2011) [CDF Collaboration], Phys. Rev. Lett. 107, 261801 (2011) [ATLAS Collaboration], Phys. Rev. D 86, 012007 (2012) (1.04 tb^{-1} 7 TeV) [CMS Collaboration], CMS-PAS-EXO-12-042 (19.6 tb^{-1} 8 TeV); Leptoquark search, final state: $\mu \mu j j$)

Partners in the fourplet Partner in the singlet

Determining bounds from searches

To determine the bounds from Tevatron, ATLAS and CMS searches we

- implement the model [FeynRules2.0 → MadGraph5 (using CTEQ6L)],
- simulate the BSM signals on parton level,
- compare with the bounds established by the experimental searches.

E.g.

Partners in the fourplet Partner in the singlet

Determining bounds from searches

[JHEP 02 (2014) 055]. Analysis for bottom partners is under way

Partners in the fourplet Partner in the singlet

Partner in the singlet

Now lets look at the opposite limit: M_1 finite and $M_4 \rightarrow \infty$. Then, all fourplet states decouple, and the only remaining BSM state is \tilde{U} .

Mass: $m_{\tilde{U}} = \sqrt{M_1^2 + (y_R f \cos(\epsilon))^2}$

only "mixing" coupling:

 $\lambda_{hu\tilde{U}} = \mathbf{y}_{R} \sin \epsilon \cos \varphi_{1}, \quad \text{with}$

 $\tan \varphi_1 \equiv \frac{y_R f \cos \epsilon}{M_1}.$

Production: pair-production (QCD and EW)

Decay: $\tilde{U} \rightarrow hj$ (100%)

Signal: $pp \rightarrow hhjj$. No data on the di-higgs channel was available at the time of our study. \Rightarrow Only "theory" bound: $m_{\bar{U}} > m_h$ (otherwise Higgs BR are modified).

Partners in the fourplet Partner in the singlet

Constraining Partners in the singlet

[TF, Jeong Han Kim, Seung Joon Lee, Sung Hak Lim, arXiv:1312.5316]

Two main possibilities:

• Wait for ATLAS and CMS di-Higgs searches By now CMS published di-Higgs search results in the *IIII* and *II* $\gamma\gamma$ channel. [CMS PAS HIG-13-025] Matching the cross-section bounds to our previous CHM analysis yields the estimate: $m_{U_h} \gtrsim 300 \text{ GeV}$.

• Consider the *hhij* channel as an additional source of Higgs production and use "standard" Higgs search data. (Requires suitable observables which allow to discriminate between SM and BSM production of Higgses; *e.g.* $p_T^h \leftrightarrow$ boosted signals) Result: $m_{U_h} > 310 \text{ GeV}$ [TF, J.H. Kim, S.J. Lee, S.H. Lim, arXiv:1312.5316]

Effective Lagrangian for a composite quark partner in the SO(4) singlet representation:

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \overline{U}_h \left(i \not\!\!D - M_{U_h} \right) U_h - \left[\lambda_{\rm mix}^{\rm eff} h \overline{U}_{h,L} u_{l,R} + \text{h.c.} \right].$$

Partners in the fourplet Partner in the singlet

Constraining Partners in the singlet

BSM production channels which yield Higgs bosons:

Note: Processes (a)-(c) produce one or two partner quarks which decay into a boosted Higgs (if $M_{U_h} > m_h$) and a light quark.

- Unlike SM produced Higgses, this typically yields high p_T Higgses.
- The BSM processes yield one (or more) high p_T jets in the final state.

Partners in the fourplet Partner in the singlet

Constraining Partners in the singlet

ATLAS provides measurements of differential cross sections of the Higgs di-photon decay, where bounds on the $p_T^{\gamma\gamma}$, N_{jets} , and p_T^{j1} distributions are given [ATLAS-CONF-2013-072].

We simulate these distributions for BSM Higgs production and subsequent $H \rightarrow \gamma \gamma$ decay.

Example: $p_T^{\gamma\gamma}$, N_{jets} , and p_T^{j1} distributions for $M_{U_h} = 300 \text{ GeV}$ and $y_R = 1.1$.

Partners in the fourplet Partner in the singlet

Constraining Partners in the singlet

Performing a bin-by-bin χ^2 test on the BSM distributions, we obtain a bound on the composite quark parameter space.

Conclusions

- Composite Higgs models provide a viable solution to the hierarchy problem and generically predict partner states to the fermions.
- The phenomenology of light quark partners strongly differs from top-partner phenomenology.
- For partially composite quarks with partners in the fourplet, we find a flavor and y_R independent bound of $M_4^{u/c} \gtrsim 525$ GeV as well as stronger flavor and y_R dependent bounds (*e.g.* $M_4^u \gtrsim 1.8$ TeV, $M_4^c \gtrsim 0.8$ TeV for $y_R^{u/c} = 1$).
- For partially composite quarks with partners in the singlet, we find a flavorand $\lambda_{\text{mix}}^{\text{eff}}$ independent bound of $M_{U_h} > 310 \,\text{GeV}$ as well as increased flavor-and $\lambda_{\text{mix}}^{\text{eff}}$ -dependent bounds.
- We performed analogous analyses for fully composite right-handed light quarks, for which many of the aspects presented here apply as well.

Some explicit expressions (CCWZ) General case for partially composite quarks Fully composite quarks

Backup

Definition of *d* and *e* symbols:

$$\begin{aligned} d^{i}_{\mu} &= \sqrt{2} \left(\frac{1}{f} - \frac{\sin \Pi/f}{\Pi} \right) \frac{\vec{\Pi} \cdot \nabla_{\mu} \vec{\Pi}}{\Pi^{2}} \Pi^{i} + \sqrt{2} \frac{\sin \Pi/f}{\Pi} \nabla_{\mu} \Pi^{i} \\ e^{a}_{\mu} &= -A^{a}_{\mu} + 4 i \frac{\sin^{2} (\Pi/2f)}{\Pi^{2}} \vec{\Pi}^{t} t^{a} \nabla_{\mu} \vec{\Pi} \end{aligned}$$

 d_{μ} symbol transforms as a fourplet under the unbroken SO(4) symmetry, while e_{μ} belongs to the adjoint representation.

 $\nabla_{\mu}\Pi$ is the "covariant derivative" of the Goldstone field Π

 $\nabla_{\mu}\Pi^{i} = \partial_{\mu}\Pi^{i} - iA^{a}_{\mu}\left(t^{a}\right)^{i}{}_{i}\Pi^{j},$

 A_{μ} : gauge fields of the gauged subgroup of $SO(4) \simeq SU(2)_L \times SU(2)_R$

$$\begin{aligned} A_{\mu} &= \frac{g}{\sqrt{2}} W_{\mu}^{+} \left(T_{L}^{1} + i T_{L}^{2} \right) + \frac{g}{\sqrt{2}} W_{\mu}^{-} \left(T_{L}^{1} - i T_{L}^{2} \right) \\ &+ g \left(c_{w} Z_{\mu} + s_{w} A_{\mu} \right) T_{L}^{3} + g' \left(c_{w} A_{\mu} - s_{w} Z_{\mu} \right) T_{R}^{3} \end{aligned}$$

Explicit form in unitary gauge:

$$\begin{cases} e_{L}^{1,2} = -\cos^{2}\left(\frac{\overline{h}}{2f}\right) W_{L}^{1,2} \\ e_{L}^{3} = -\cos^{2}\left(\frac{\overline{h}}{2f}\right) W^{3} - \sin^{2}\left(\frac{\overline{h}}{2f}\right) B, \end{cases} \begin{cases} e_{R}^{1,2} = -\sin^{2}\left(\frac{\overline{h}}{2f}\right) W_{L}^{1,2} \\ e_{R}^{3} = -\cos^{2}\left(\frac{\overline{h}}{2f}\right) B - \sin^{2}\left(\frac{\overline{h}}{2f}\right) W^{3} \end{cases}$$

and

$$\begin{cases} d_{\mu}^{1,2} = -\sin(\overline{h}/f) \frac{W_{\mu}^{1,2}}{\sqrt{2}} \\ d_{\mu}^{3} = \sin(\overline{h}/f) \frac{B_{\mu} - W_{\mu}^{3}}{\sqrt{2}} \\ d_{\mu}^{4} = \frac{\sqrt{2}}{f} \partial_{\mu} h, \end{cases}$$

Some explicit expressions (CCWZ) General case for partially composite quarks Fully composite quarks

General case: M_1 and M_4 finite.

We have obtained bounds on the fourplet partners with the singlet decoupled.

How are these bounds modified when the singlet is not decoupled?

BSM Particle content: $X_{5/3}$, D, U_p , U_1 , U_2 Where $U_{1,2}$ are the mass eigenstates of $U_m - \tilde{U}$ mixing.

Masses: $m_{U_p} = m_D = m_{X_{5/3}} = M_4, m_{U_{1,2}} = \frac{1}{2} \left[M_1^2 + M_4^2 + y_R^2 f^2 \mp \sqrt{(M_1^2 - M_4^2 + y_R^2 f^2)^2 - 4\sin^2 \epsilon (M_1^2 - M_4^2) y_R^2 f^2} \right].$

"mixing" couplings with light quarks:

$$\begin{array}{ll} \lambda_{huU_1} &\approx & -y_R \cos\epsilon\cos\varphi_4\cos\tilde{\varphi}_1\\ \lambda_{huU_2} &\approx & y_R\sin\epsilon\cos\varphi_4\cos\tilde{\varphi}_1, \end{array}\\ g_{WuD} = -g_{WuX} = -c_w \, g_{ZuU_p} &\approx & \displaystyle \frac{g}{2}\cos\epsilon\sin\varphi_4\cos\tilde{\varphi}_1, \end{array}$$

where

$$\tan \tilde{\varphi}_1 \equiv \frac{y_R f \cos \epsilon / M_1}{1 + (y_R f \sin \epsilon)^2 / M_4^2}.$$

...also present: "Mixing" couplings amongst heavy quarks partners: $\lambda_{hU_1U_2}$, $g_Z U_{1/2} U_p$, and analogous for charged couplings.

Consequences of finite M_1 for fourplet bounds:

- The single-production cross section of *X*_{5/3}, *D*, *U*₁ is reduced. Physical reason: The production arises due to mixing of *u*_R with the fourplet, but now, *u*_R also mixes with the singlet.
- If the lighter up-type mass eigenstate U_1 is mostly singlet (for $M_1 \leq M_4$): Fourplet states U_p , D, $X_{5/3}$ can also cascade decay via the U_1 \rightarrow The previously considered signal cross section gets reduced due to the BR into cascade decays.

Motivation Partially composite quarks Conclusions and Outlook Backup General case: M1 and M4 finite, up-partners

Limits on y_R^{μ} as a function of M_4 for different values of $g_1^* \equiv M_1/f$. Solid: full limits. Dashed: limits ignoring signal loss due to cascade decays.

Some explicit expressions (CCWZ) General case for partially composite quarks Fully composite quarks

Fully composite quarks

Fermion embedding

Like before:

$$q_L^5 = \frac{1}{\sqrt{2}} \begin{pmatrix} id_L \\ d_L \\ iu_L \\ -u_L \\ 0 \end{pmatrix}, \quad \psi = \begin{pmatrix} Q \\ \tilde{U} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} iD - iX_{5/3} \\ D + X_{5/3} \\ iU + iX_{2/3} \\ -U + X_{2/3} \\ \sqrt{2}\tilde{U} \end{pmatrix},$$

but now, embed u_R as a chiral composite SO(5) singlet.

Fermion-Lagrangian

$$\begin{aligned} \mathcal{L}_{comp}^{f} &= i \,\overline{\psi}(D_{\mu} + ie_{\mu})\gamma^{\mu}\psi + i \,\overline{u}_{R} \overline{\mathcal{P}} u_{R} - M_{4} \overline{\mathcal{Q}} \mathcal{Q} - M_{1} \overline{\widetilde{\mathcal{U}}} \widetilde{\mathcal{U}} \\ &+ \left[ic_{L} \,\overline{\mathcal{Q}}_{L}^{i} d_{\mu}^{i} \gamma^{\mu} \,\widetilde{\mathcal{U}}_{L} + ic_{R} \,\overline{\mathcal{Q}}_{R}^{i} d_{\mu}^{i} \gamma^{\mu} \,\widetilde{\mathcal{U}}_{R} + \text{h.c.} \right] + \left[ic_{1} \,\overline{\mathcal{Q}}_{R}^{i} d_{\mu}^{i} \gamma^{\mu} u_{R} + \text{h.c.} \right], \\ \mathcal{L}_{el+mix}^{f} &= i \,\overline{q}_{L} \overline{\mathcal{P}} q_{L} - \left[\mathbf{y} \, f \left(\overline{q}_{L}^{5} \mathcal{U}_{gs} \right)_{i} \mathcal{Q}_{R}^{i} + \right. \\ &+ \mathbf{y} \, c_{2} \, f \left(\overline{q}_{L}^{5} \mathcal{U}_{gs} \right)_{5} u_{R} + \mathbf{y} \, c_{3} \, f \left(\overline{q}_{L}^{5} \mathcal{U}_{gs} \right)_{5} \widetilde{\mathcal{U}}_{R} + \text{h.c.} \right], \end{aligned}$$

Some explicit expressions (CCWZ) General case for partially composite quarks Fully composite quarks

Determining bounds from searches

Some explicit expressions (CCWZ) General case for partially composite quarks Fully composite quarks

General case: M_1 and M_4 finite, up-partners, fully composite

Limits on c_1^{\prime} (solid) and c_1^{c} (dashed) as a function of M_4 for different values of c_R/c_1 (with $c_L = c_R$).

Some explicit expressions (CCWZ) General case for partially composite quarks Fully composite quarks

Constraining partner quarks in the singlet

Main difference as compared to partially composite quarks:

- The "mixed" coupling to the Higgs is naturally small for light quark partners.
 ⇒ QCD pair production is the dominant production process.
- The BR of U_h decays into W, Z, and h and a light quark are $\sim 50\%, \sim 25\%, \sim 25\%$.
 - \Rightarrow the "signal" from $U_h \rightarrow hj \rightarrow \gamma\gamma j$ is reduced.

With an analogous study as for the partially composite quarks, we find a a flavor and y_R independent bound of $M_{U_h} \gtrsim 212 \text{ GeV}$.