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L introduction

|—Beyond the standard model: P(vx — vy) & py.
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L introduction

I—Beyond the standard model: P(vx — vy) & py.

Dirac neutrinos (v # 7q)

P 6v/2GEme
0 (47)?
(Fujikawa et al. 1980), p2 =377 (gl + lejl?).

, =3.20 x 10797
m, =3.20 x 107192

Majorana neutrinos (Vo = 74)

wii = €ji = 0.
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L introduction

I—Beyond the standard model: P(vx — vy) & py.

If we take into account that neutrinos have dipole moments:

m The neutrino spin precess, v; = Vg in magnetic fields.

m [, contributes to the scattering cross section ve + e — e + v.
Terrestrial experiment show that 5, < 3.2 x 107 g at 90%
CL (Beda et al. 2010).

m Transition moments allow the radiative decay vp — v1 + 7y
(between my > my), the decay rate is:

2 2 . 2 2 3
_ My My —my\ —1( M (my>
Mspnyy = 2 [ —=—= ] =5.308 — —
S 87T< my ) ° (MB) eV
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L introduction
I—Beyond the standard model: P(vx — vy) & py.

Plasmon Decay: v, — vv

The neutrino dipole moments enhances the decay rate v, — Vv
(Bernstein et al. 1963) implying a new energy loss channel in stars,
when the plasmon decay becomes important.
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L Axions

|—S':rong CP problem

2

‘CQCD = Zﬁ(’yulDu — ) — —G:VGéLV + 932— G:VG;‘V

n

Looking the electric dipole moment of the neutron:

. - €bmg

2
my

|dn| < 2.9 x 1072%¢ - cm 90% C.L. Baker et al. 2006.

— 0 < 1071, why so small!!!

Solution:

m Deal with 6 as a dynamical variable, Peccei & Quinn 1977
— L= 28550
the CP problem)

$2GJ, GX" (this is the most elegant solution to
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L Axions

L Axion models

The KSVZ model (Shifman et al. 1980)

1 ) S
Lay = _ZgawFWFgw = 8nkE - Ba

The DFSZ model (Dine et al. 1981)
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L Hint for axion existence
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Axions with m=5meV

From White Dwarfs, Isern et al. 2013
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L Hint for axion existence
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L Hint for axion existence
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L Globular Clusters as laboratories for particle physics.

M3 Globular Cluster
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L_Globular Clusters as laboratories for particle physics.
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L_Globular Clusters as laboratories for particle physics.
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L Neutrino emission from stars

Neutrino emission becomes more efficient as the star evolve. In the
main sequence, neutrino emissions are due to nuclear reactions as
p+p— d+ e’ + v.. For advanced evolutionary phases, thermal
processes dominates:

14
v
v et v
Y v e e
,y M ’
v e e e v
Plasmon Decay Compton Process Pair Annihilation Bremsstrahlung

Figure : Raffelt 2012, http://arxiv.org/abs/1201.1637
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L Neutrino emission from stars
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Figure : Raffelt 2012, http://arxiv.org/abs/1201.1637
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L Neutrino emission from stars

A sensitive observable to constrain enhanced energy loss is the
brightness of the tip of the red giant branch.
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L Axion emission from stars

10?

vy ---a ’)/LLLLLIA Lca
% . .

Primakoff Process

Pair Annihilation

Bremsstrahlung (D)

413—1]

= 10t

elerg

10°

’
Bremsstrahlung (ND) /
’

1
!
’
’
L

T = 10°[K]

10°

. .
10! 10? 10° 10

plg/em?)

-
---=-a P
€ e
VWA Y
Bremsstrahlung

€T = (eﬁ},—i—egl)_l—i-ec

(adapted from
Raffelt & Weiss 1995)



Globular Clusters as laboratories of physics beyond the standard model: Neutrino magnetic moment and Axions

L Axion emission from stars
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Globular Cluster M5 as first test.
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L Finding the tip of the RGB (TRGB)
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L Finding the tip of the RGB (TRGB)

Probability distribution
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(Atip) = 0.048 mag and o4, = 0.058 mag,
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L Theoretical framework
L Princeton-Goddard-PUC stellar evolution code PGPUC with o included

Along this work, we use the Princeton-Goddard-PUC (PGPUC;
Valcarce et al. 2012) stellar evolution code.

[ www2.astro.puc.cl

PGPUC..

Home Evolutionary Tracks. Isochrones. Webtools, References

Home
This database was created using the PGPUC stellar evolution code (see references).

Question, suggestions, bugs and/or collaborations: see the FAQ section or send us an email

News

13/02/2013 : Z calculator added into the section Webtools.
20/08/2012 : Website is Officially Online.
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L Uncertainties

|—Observational uncertainties

Summarizing observational uncertainties
The TRGB is located in the interval

M/ ,TRGB — =h- <Atip> —(m— M)o

=

M, 'TrReB — —4.17 £0.13 mag
This is obtained summing in quadrature the individual error
sources:
m Distance modulus 0.11 mag.
TRGB 0.058 mag.
Calibration of the photometry, +£0.02 mag.

Saturation, completeness and crowding, combined contribute
less than +0.01 mag.
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L Uncertainties

L Theoretical uncertainties

Now we analyze different source of errors that can affect the TRGB
in the I-band absolute magnitude. For this we use the benchmark
values (for the evolutionary tracks) that is used along this work.
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L Uncertainties

L Theoretical uncertainties

Mass

—4r — 0.820M, 1
— 0.850M,
—  0.800M,
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L Uncertainties

L Theoretical uncertainties

Helium abundance
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L Uncertainties

L Theoretical uncertainties

[ron abundance
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L Uncertainties

L Theoretical uncertainties

[/ Fe] ratio
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L Uncertainties

L Theoretical uncertainties

Mixing-length parameter a7
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L Uncertainties

L Theoretical uncertainties

Nuclear reactions rates

Table : Changes in M; Trgp due to uncertainties in nuclear reaction rates

Nuclear reaction Range Change in M| TraB
"H4+'H->?H+ et +ve +3% +4.06 x 10~% mag
3He +3He — “He +2p  4+2%  +3.39 x 107* mag
3He + *He — "Be + v +6%  +3.70 x 10~* mag
Be+ e~ — "Li+ve +10% £2.27 x 103 mag
"Be+1H — 8Be + v +3%  42.03 x 1073 mag
12C 4+ 4He — 190 + 4 +10% +1.25 x 10~* mag
“He + “He — 8Be + v +19% +1.39 x 102 mag
8Be + *He — 12C + v +10% £7.43 x 1073 mag
UN+p—=10+7 +15% F9.58 x 1073 mag
TOTAL +1.87 x 1072 mag
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L Uncertainties

L Theoretical uncertainties

Mass loss

M = 0.82,
M =0.78,
M = 0.74¢
M = 0.70,
M = 0.65¢
M = 0.60,
M = 0.57
M = 0.54¢

/ —4.02}
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L Uncertainties

L Theoretical uncertainties

Color transformation and bolometric corrections

— Color Transformation
—4r — Worthey et al. 2011

— VandenBerg et al. 2003
—— Castelli & Kurucz 2004
—92b Girardi 2002

~ ol |
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L Uncertainties

L Theoretical uncertainties

Summarizing theoretical uncertainties

Error budget in theoretically predicted M,t’hTeﬁgB

Input quantity Adopted Range  AM; trgr [X0.01 mag]
Mass (M) 0.820 + 0.025 0.2

Y 0.245 +0.015 +1.0

V4 0.00136 + 0.00035 +0.7/—-0
[/ Fe] 0.3+0.1 F0.4
QMLT agadibrated 4 .2 +5.6
Atomic diffusion See text +0/-0.6
Boundary conditions (1 +0.05) T(7) F0.7
Krad +10% F0.02

Ke +10% +1.6
Nuclear rates See Table 1 +1.9

Nuclear screening +20% +1.1
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L Uncertainties

L Theoretical uncertainties

Summarizing theoretical uncertainties

Input quantity  Adopted Range AM, tres [X0.01 mag]
Neutrino emission 45% F1.3

EOS 8 cases +2.4/-0.5

Mass loss (M) 0.12-0.28 +2.2/+35
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L Neutrino case

I—Comparing observational and theoretical results

Constraints on

Ly < 2.6x107 at68% C.L.,
Ly < 45x107'2 at95% C.L.
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LA><ion case

LComparing observational and theoretical results

M rraB
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L Axion case

I—Comparing observational and theoretical results

Constraints on ge

Gaee < 2.6x10713 at68% C.L.,
Gaee < 43x10713 at95% C.L.
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L Conclusion

m We have used ultra-precise and homogeneous set of
observations of Mb.

m Our 1o limits, is consistent with the constraints found in
earlier works (Raffelt 1990, Raffelt & Weiss 1992, Catelan
1996), if one interpret the earlier limits at 1o.
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L Conclusion

m Our results is more robust due that it is based on the
state-of-the-art astronomical data, evolutionary calculations
using up to date physical inputs.

m The constraints on p,, and g,e are the most restrictive with
C.L up to date.

m We did the same study for the Globular Cluster M3, and we

obtain a very good agreement with the results showed for the
M5 case.
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