ALICE electronics upgrade

Technical design report of the ALICE high rate detector upgrade

A. Kluge, 24 September 2013

Upgrade Overview

- data taking & trigger strategy
- architecture
- detector overview
 - read-out capabilites
- upgrade developments
 - common developments
 - detector specific developments

- General principle:
 - store all information from interactions (if possible)
 - upgrade detectors to
 - trigger-less, data driven → continuous read-out

- Upgrade to a continuous/trigger-less read-out of:
 - TPC
 - muon chamber (MCH)
 - inner tracking system (ITS)
- for an interaction rate of 50 kHz
 - with a design margin to 100 kHz for the read-out

All other detectors have a triggered read-out.

- Two groups of detectors:
- continuous read-out and triggered detectors:
 - − → ALICE still needs a trigger signal:
 - interaction trigger

- Within triggered detector group:
 - Those with and without multi-event buffer
 - With different maximum read-out rate
 - with different live (not busy) time

Concept: Upon interaction trigger

 read-out all detectors which are not busy

- Trigger scaling for specific combination of detectors optional.
 - Control by Central Trigger Processor (CTP)
 - trigger cluster

Upgrade overview- Summary trigger

- Interaction trigger for triggered detectors
- Suppression of trigger transmission to detectors already busy
- Possible beam or sensor induced noise rejection for ITS ->
- Commissioning, cosmic runs →

 Consequence → continuous read-out detectors (TPC, MCH, ITS) need trigger capability

Upgrade overview- Summary trigger

- Option: Statistic scaling for detector combination with low read-out rate (EMC, PHO, HMP)
- Option: Interaction rate down scaling if DAQ is not fully active ->

Trigger levels

Trigger mode/level	Max rate PbPb [kHz]	Latency @ CTP output [ns]	Detector contributor
continuous	-		
LM	50	800	FIT
LO	50	1200	option: ACO, EMC-sum, PHO-sum, TOF
L1	50	1200 – 6000	ZDC, (option: EMC-jet)

Central Trigger Processor

DAQ & heartbeat trigger

DAQ & heartbeat trigger

- Continuous read-out detectors ->
 - data stream separated in time frames
 - using heart beat triggers sent at time frame boundary

DAQ & heartbeat trigger

- Heart beat trigger (hb)
 - creates time frame boundary
 - sends bunch crossing (bxc) and orbit counters (oc)
 - FE re-synchronises
 - TTC system will not send full bxc & oc
 - bandwidth excess
 - also triggered detectors get hb trigger

Read-out architecture

Read-out architecture

- General principle:
 - store all data from interactions (if possible)
 - includes a trigger processor

Read-out architecture

- Standard interface to DAQ/DCS
 - Detector Data Links DDL 1, 2 already developed
 - 2.125 and 4.25/5.3125 Gb/s
 - DDL3 still to be developed
 - ≤ 10 Gb/s GbE or PCle over cable or PCle plug-in cards
- Standard interface to Trigger
 - GBT links
 - TTC links for non-upgraded electronics

Architecture – common read-out unit CRU

- ALICE standard common read-out unit CRU used by new detectors & those who upgrade
 - TPC, MCH, ITS, TRD, ZDC, MID

Architecture – CRU – counting room

Architecture – CRU – counting room

- TPC is cost defining factor for optical fibers:
 - CRU counting room study
 based on the LHCb read-out board AMC40
- 6300 TPC front-end links with SEU correction
- 4700 TPC front-end links without SEU correction
 - TPC front-end links only partly bi-directional

Architecture – CRU – cavern

Architecture – CRU – counting room

- TPC is cost defining factor for optical fibers:
- 1836 DDL fibers, all bi-directional
- up to 1836 trigger fibers

Architecture: CRU considerations

- access of location during operation
- electronics in radiation
- installation direct on detector
- possibility to share development
- bandwidth GBT 10 GbE → number of fibers

- Base-line is CRU-counting room
 - Feasibility studies on-going

Detector Overview

Detector Overview

	trigger needed	max RO rate (kHz)	busy > 0%
- TPC		50	
– MCH		100	
– ITS:		100	
- TOF:	Υ	100	
- MUONID:	Υ	>100	
- FIT:	Υ	200	
- ZDC:	Υ	>100	
– PHOS:	Υ	46	Υ
- TRD:	Υ	50	Υ
– EMCAL:	Υ	46	Υ
- HMPID:	Υ	2	Υ

Detector Overview: new components

	FE ASIC	FEC	MUX
TPCMCHITS:	17k SAMPA 33k SAMPA 25k pixel ASIC	3400 550 200	CRU CRU CRU/other
TOF:MUONID:FIT:ZDC:	FEERIC	234 upgrade commercial	72 DRM CRU DRM(TOF) CRU
– PHOS:– TRD:– EMCAL:– HMPID:			CRU

Detector developments: common

- common read-out ASIC SAMPA
- TPC & muon chambers (MCH)

Detector developments: SAMPA

- common read-out ASIC SAMPA
- TPC & muon chambers (MCH)

Detector developments: common

- common read-out ASIC SAMPA
- TPC & muon chambers (MCH)
 - 32 channel amplifier-shaper-ADC-DSP
 - trigger less or continuous read-out
 - -<600 e @ 25 pF (TPC), < 750 e @ 40 p (MCH)
 - bi-polarity input
 - 10 bit ADC 10 Msamples/s
 - on ASIC base-line correction and zero suppression
 - 4 x 320 Mbit/s serial outputs
 - 130 nm TSMC CMOS process

Detector developments: TPC

- ~ 500.000 pads
- Sensor FE-ASIC FEC Data DDL 3
- MWPCs replaced by GEMs for 50 kHz read-out rate
- upgrade to continuous read-out @ 50 kHz interaction rate
- 4320 Front-end cards are replaced
- ~ 17.000 SAMPA ASICs
 - baseline specifications:
 - input charge: < 100 fC,
 - 160 ns shaping time,
 - 10 MHz ADC sampling,
 - 10 bit resolution
- RCUs are replaced by CRUs allowing continuous read-out
- Trigger optional

Detector developments: ITS

• 25 G pixels

- complete new detector
 - ASIC, sensor, read-out, mechanics cooling
- continuous read-out @ 100 kHz hit rate
- trigger option
 - to decrease effects to due possible beam/sensor effects
- Detector module sends data 1 Gb/s links
 - base-line electrical
 - close to detector link interface needed
- Baseline read-out concentrator CRU

Detector developments: muon chamber

- ~1.000.000 MWPC
- upgrade to continuous read-out @ 100 kHz hit rate
- Replacement of the front-end by ~ 33.000 SAMPA ASIC
 - baseline specifications:
 - input charge: < 400 fC,</p>
 - 330 ns shaping time,
 - 10 MHz ADC sampling,
 - 10 bit resolution
- Replacement of active patch panels (first level of data concentration)
 - based on GBTs or electrical e-links
- Replacement of data concentrator by CRUs

Detector developments: muon identifier

- replacement of front-end electronics to slow down aging speed of RPCs
 - by operation in avalanche mode reducing charge produced in the gas
- Front-end ASIC is replaced by FEERIC ASIC
 - with amplification
- Read-out out at 100 kHz @ 0 % busy
- Suppression of muon trigger capability

Detector developments: muon identifier

- Replacement of 2 levels of data concentrators by 234 new front-end cards and CRUs
- Small scale system with FEERIC will be tested already in run 2

Detector developments: TOF

• ~160.000 MRPC pads Sensor FE-ASIC FEC Data MUX DDL 2/3

- rate upgrade from 10s of kHz to 100 kHz PbPb without dead time
 - max limit by HPTDC in FEC is 440 kHz
 - rate limit comes from VME based read-out and data format
- upgrade firmware for data format and VME protocol
- replace 72 2nd level data concentrator boards (DRM)

Detector developments: TRD

• 1.151.000 channels

- rate upgrade from 8 kHz to 50 kHz with 23 % busy
- triggered operation (LM & L1)
- FE electronics unchanged, but data load reduced with firmware change
 - pre-processed data (tracklets) are transferred only or
 - partial read-out based on electron region candidates
- Data MUX is CRU

Detector developments: FIT

- 64 Scintillators
- Provides interaction trigger
- timing reference for TOF
- multiplicity measurement
- New detector implementation
 - new front-end
 - RO based on TOF read-out scheme

Detector developments: ZDC

• 22 channels

- Sensor FEC Data DDL 3
- outside of radiation zone
- use NIM, VME and commercial electronics
- provides timing trigger
- upgrade from 8 kHz to 16 kHz by introduction of multi-event buffers in firmware (run 2)
- to 100 kHz without dead time
 - commercial digitizers with on board FPGAs
 - TDC model firmware upgrade
 - replacement of data concentrator card (ZRC) and
 - use CRU

Detector developments: EMCal

• ~ 18.000 channels

Sensor

FEC

Data DDL 2

- provides trigger
 - L0 input: sum
 - L1 input: shower and jet
- has already been upgraded to 46 kHz @ 15 % busy
 - front end (ALTRO) limits to 50 kHz
 - data reduction by on-line data evaluation
 - replacement of data concentrators by SRU (Scalable Read-out Unit, RD51)

Detector developments: PHOS

- provides trigger
 - L0 input: sum
- taking same approach as EMCAL to 45 kHz @ with busy time
 - front end (ALTRO) limits to 50 kHz
 - data reduction sample number reduction
 - replacement of data concentrators by SRU (Scalable Read-out Unit, RD51)
 - replacement of trigger region units (TRU)

Detector developments: HMPID

Sensor FEC Data DDL 2

- ~160.000 channels MWPC
- RO rate to 2,5 kHz
- No detector/electronics change

Summary

- Continuous RO of TPC, MCH, ITS
- Other detectors triggered RO for interaction at 50 kHz
- CTP simplified, but still required
- Common read-out architecture for new systems CRU
- Common TPC/MCH read-out ASIC SAMPA