Selection Of Optimized Heating and Cooling Arrangement for SAS Mock-Up

- IC: Internal Cooling (cooling channels in the core)
- EC: External Cooling (cooling channels in the manifold)
- IH: Internal Heating (heating source at the centre of the core)
- EH: External Heating (heating source in the slots)

Boundary Conditions

- Power 820 Watts
- Natural Convection $4 \times 10^{-6} \mathrm{~W} /\left(\mathrm{mm}^{2} \mathrm{C}\right)$ (Air) at $20^{\circ} \mathrm{C}$
- Forced Convection $4 \times 10^{-3} \mathrm{~W} /\left(\mathrm{mm}^{2} \mathrm{C}\right)$ (water cooling) $25^{\circ} \mathrm{C}$

Geometry and Fixed Supports

Mock-up with V-supports

Fixed supports for static analysis

Definition of Paths

- The paths for deformations result are taken in lateral directions (both horizontal and vertical)
- Vertical direction is in the direction of V-Supports.
- Results are shown for radial distance ranges from 4 to 33 mm and at the centre of the core as shown below.

(1)00000000000000) 0000000000000001

Definition of Paths

Horizontal direction

Deformation in Horizontal Direction

Deformation in Vertical Direction

Deformation in both Horizontal \& Vertical Directions

HD= Horizontal Direction VD= Vertical Direction

RMS values of Deformation in horizontal and vertical direction

- $\mathrm{RMS}=\left\{(\mathrm{HD})^{2}+(\mathrm{VD})^{2}\right\}^{1 / 2}$

conclusion

- All the values shown are taken in radial direction at the centre of the mock-up.

Horizontal Direction

- Case 2 (IC-IH) has the maximum deformation at centre
- Remaining cases have almost similar deformation at the centre Vertical Direction
- Case $2(\mathrm{IC}-\mathrm{IH})$ has the minimum deformation at centre
- Case 1 (IC-EH) has the maximum deformation at the centre RMS
- Case 2 (IC-IH) has the minimum and Case 1 (IC-EH) has the maximum deformation at the centre

