Selection Of Optimized Heating and Cooling Arrangement for SAS Mock-Up

- IC: Internal Cooling (cooling channels in the core)
- EC: External Cooling (cooling channels in the manifold)
- IH: Internal Heating (heating source at the centre of the core)
- EH: External Heating (heating source in the slots)

Boundary Conditions

- Power 820 Watts
- Natural Convection 4x10⁻⁶ W/(mm² C) (Air) at 20°C
- Forced Convection 4x10⁻³ W/(mm² C) (water cooling) 25°C

Geometry and Fixed Supports

Mock-up with V-supports

Fixed supports for static analysis

Definition of Paths

- The paths for deformations result are taken in lateral directions (both horizontal and vertical)
- Vertical direction is in the direction of V-Supports.
- Results are shown for radial distance ranges from 4 to 33 mm and at the centre of the core as shown below.

Definition of Paths

Horizontal direction

Vertical direction

Center of Core

Deformation in Horizontal Direction

Deformation in Vertical Direction

Deformation in both Horizontal & Vertical Directions

RMS values of Deformation in horizontal and vertical direction

• RMS = $\{(HD)^2 + (VD)^2\}^{1/2}$

Conclusion

 All the values shown are taken in radial direction at the centre of the mock-up.

Horizontal Direction

- Case 2 (IC-IH) has the maximum deformation at centre
- Remaining cases have almost similar deformation at the centre

Vertical Direction

- Case 2 (IC-IH) has the minimum deformation at centre
- Case 1 (IC-EH) has the maximum deformation at the centre

<u>RMS</u>

 Case 2 (IC-IH) has the minimum and Case 1 (IC-EH) has the maximum deformation at the centre