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Generalities and jargon 
•  cross sections in the Bjorken limit of QCD 

are expressed as a 1/Q2 “twist” expansion 

collinear factorization: parton content of proton described by kT-integrated distributions 
sufficient approximation for most high-pT processes 

 

TMD factorization: involves transverse-momentum-dependent (TMD) distributions 
TMDs are needed in particular cases 

fp = PDF or TMD
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•  cross sections in the Regge limit of QCD 

kT factorization: parton content described by the un-integrated gluon distribution (UGD) 

are expressed as a 1/s “eikonal” expansion 

fp = UGD



Collinear factorization 
in standard pQCD calculations, the incoming parton transverse momenta are 

set to zero in the matrix element and are integrated over in the parton densities 

in general for a hard process, this approximation is accurate 

in some cases however, this is not good enough, 
and TMD factorization is needed 

kT integrated quantities 

the incoming partons 
are taken collinear to 
the projectile hadrons 
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Drell-Yan process 

in collinear factorization 

the transverse momentum of the lepton 
pair is the sum of the transverse 
momenta of the incoming partons 
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Fig. 1. The parton model for the Drell-Yan process

Because the transverse momentum qT of the lepton pair is the sum of the trans-
verse momenta of the partons, the cross section (1) is directly sensitive to partonic
transverse momenta. If the partons had no transverse momentum, the cross section
would be a delta-function at qT = 0. This contrasts with deep-inelastic scattering
where only one parton participates in the hard scattering, so that its transverse
momentum can be neglected with respect to the large momentum transfer Q in the
hard scattering.

The need for TMD parton densities in Eq. (1) establishes that TMD parton
densities are important quantities for a quantitative description of many hard pro-
cesses.

To derive the parton model, one needs to use a cancellation of spectator-
spectator interactions.3 In addition one needs to assume other topologies of graph
are unimportant, that partonic kT and virtuality are limited, and that no higher-
order corrections are needed to the hard scattering. All of the last three assumptions
are violated in QCD and are associated with a need to modify the definitions of the
parton densities and the factorization formula in QCD.

2.1. Explicit definition of TMD parton density: complications in
QCD

In constructing an operator definition of a TMD parton density in a hadron, I
assume that the hadron is moving in the +z direction, and I will use light-front
coordinates defined by vµ = (v+, v−,vT), with v± = (v0 ± vz)/

√
2, vT = (vx, vy).

The parton model leads to a definition of a parton density as a hadron expecta-
tion value of the number density of a parton, as specified in light-front quantization.
A first attempt at applying this in QCD uses the A+ = 0 gauge. This is equiva-
lent to the following gauge-invariant definition with a Wilson line in the directiona

−n = −(0, 1,0T):

aNote that the derivation of factorization requires that parton densities for the Drell-Yan process

use past-pointing Wilson lines.4
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in this case, TMDs can be useful objects :  

Drell-Yan production is directly sensitive to partonic transverse momenta 
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A general guiding rule 
•  Consider an hadronic collision A+B ! C +D + · · ·+X

- if one hadron is involved, TMD and kT factorization OK 
 

- if two hadrons are involved, TMD factorization OK but process 
dependent (and soft factor needed), kT factorization OK 
 

- if more than two hadrons are involved, no TMD or kT factorization, 
except in some special cases and limits 

note: dilute-dense colliding hadrons (p+A or p+p 
         at forward rapidities) only count for 1 hadron 



•  in many cases, TMD/kT factorization is broken at some order of the 
perturbation theory, here I am only discussing the validity at leading-
order 

•  warning: in cases where TMD/kT factorization is not valid, it is still 
applied in phenomenological studies, due to the lack of alternatives 
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One-hadron case, e.g.: 

p+A ! �⇤ +X

�⇤ + p(A) ! X



Deep inelastic scattering 
La factorisation
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apartons x
DIS += ∑ ∫ ξσξφξσ

dans la limite de Bjorken

perturbatif

non perturbatif

• On peut calculer 
perturbativement des 
processus impliquant 
des hadrons

a = quarks, gluons

φφ ⊗=
∂

∂ DGLAP?)(Qln 2
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

• L’évolution de φ avec 
Q2 est perturbative:

factorization 
line 

kT

let’s consider the two limits in which the 
cross section can be obtained: 

- set kT=0 in ME and 
integrate over it in pdfs up 
to the factorization scale µ2 

- pdfs have ξ dependence 
and evolve with µ2 (DGLAP) 
- a usual scale choice is Q2 
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 photon virtuality 
Q2 = - (k-k’)2 > 0 

Bjorken limit: 
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 photon virtuality 
Q2 = - (k-k’)2 > 0 

Bjorken limit: 
- set ξ=0 in ME and 

integrate over it in pdfs 
down to the factorization “scale” x 

- pdfs have kT dependence 
and evolve with x (BFKL/BK) 

- a usual choice is x=xBj  

Regge limit: 



TMD/kT factorization in DIS 
•  in the Bjorken limit, the natural factorization is not kT dependent 

but it can be extended to feature ξ and kT dependent pdfs 
(e.g. TMDs), while DGLAP evolution turns into CCS evolution 

and it is equivalent, after Fourier transformation to coordinate space, 
to the so-called dipole factorization  

•  in the Regge limit, the factorization is intrinsically kT dependent 
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and it is equivalent, after Fourier transformation to coordinate space, 
to the so-called dipole factorization  
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dipole-hadron cross-section 
overlap of 
splitting functions 

Mueller (1990), Nikolaev and Zakharov (1991) 

link to the unintegrated gluon distribution 

•  in the Regge limit, the factorization is intrinsically kT dependent 



Two-hadron case, e.g.: 

p+A ! h+X

�⇤ + p(A) ! h+X

p+ p ! �⇤ +X



The dipole factorization in SIDIS 

Q Q SIDIS 

fragmentation into hadron 

x y 

•  the cross section at small x 

dipoles in amplitude / conj. amplitude 

zh 

McLerran and Venugopalan, Mueller, Kovchegov and McLerran (1999) 

Q 



Cross section in momentum space 
•  the lepto-production cross section 

phase space F.T. of photon 
wave function 

massless quarks 

photon T 

photon L 

kT factorization 

UGD 

CM, Xiao and Yuan (2009) 



TMD factorization of SIDIS 
Collins and Soper (1981), Collins, Soper and Sterman (1985), Ji, Ma and Yuan (2005) 

•  the cross section can be factorized in 4 pieces 

(the gluon TMD piece is power-suppressed) 

TMD quark distribution 

TMD ff 

soft factor 
hard part 

valid to leading power in 1/Q2 and to all orders in 

not the naïve factorization I wrote at 
the beginning (without soft factors) 



The TMD quark distribution 
•  operator definition 

quark fields also have transverse separation Wilson lines needed 
for gauge invariance 



The TMD quark distribution 
•  operator definition 

quark fields also have transverse separation Wilson lines needed 
for gauge invariance 

•  how factorization works 

p 

p′ q 

k 
possible regions for the gluon momentum 

k collinear to p (parton distribution) 
k collinear to p’ (parton fragmentation) 
k soft (soft factor) 
k hard (      correction) 

p 

p′ q 

k 

f

?
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?
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•  gauge links make TMDs process dependent 
e.g. 



Three-hadron case, e.g.: 

�⇤ + p(A) ! h1 + h2 +X

p+ p ! h+X

p+A ! h1 + h2 +X



Di-hadron production in γ*+p(A) 
•  the cross section in the dipole picture 

x y 

x’ y’ 

because of the 4-point function    , there 
is no kT factorization (the cross section is not 
a linear function of the UGD) 

in SIDIS, the      integration sets x’=y’, 
and then 

this cancellation of the interactions involving the spectator 
antiquark in SIDIS is what led to kT factorization 

•  SIDIS was a special case 

•  in the Bjorken limit, there is no TMD factorization either 
Collins and Qiu (2007), Xiao and Yuan (2010) 



Di-hadrons in the correlation limit 

Dominguez, Xiao and Yuan (2010) 

•  kT factorization is recovered in the limit  

BUT : not the naïve factorization, as it involves a new operator definition 
of the UGD, in terms of a quadrupole (as opposed to a dipole previously) 

|k? + k0?| � |k?| , |k0?|

d�

�⇤p!qq̄X =

Z
d

2
k?d

2
k

0
? FWW (|k? + k

0
?|, x) d�̂�⇤g!qq̄

where the gauge link U [+]
ξ = Un [0,+∞; 0]Un [+∞, ξ−; ξ⊥] with Un being reduced to the

light-like Wilson line in covariant gauge. It is straightforward to see that U [+] represents the
final state interactions according to its future integration path to +∞.

By choosing the light-cone gauge with certain boundary condition for the gauge potential
(A⊥(ζ− = ∞) = 0 for the specific case above), we can drop out the gauge link contribution in
Eqs. (2) and (3) and find that this gluon distribution has the number density interpretation.
Then, it can be calculated from the wave functions or the WW field of the nucleus target
[10, 13]. Within the CGC framework, this distribution can be written in terms of the
correlator of four Wilson lines as (see Section IIB),

xG(1)(x, k⊥) = −
2

αS

∫
d2v

(2π)2
d2v′

(2π)2
e−ik⊥·(v−v′)

〈
Tr [∂iU(v)]U †(v′) [∂iU(v′)]U †(v)

〉
xg
, (4)

where the Wilson line U(x⊥) is defined as Un [−∞,+∞; x⊥]. At small-x for a large nucleus,
this distribution can be evaluated using the McLerran-Venugopalan model3 [10]
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where Nc = 3 is the number of colors, S⊥ is the transverse area of the target nucleus, and
Q2

s = g2Nc

4π ln 1
r2⊥λ2

∫
dx−µ2(x−) is the gluon saturation scale [11] with µ2 the color charge

density in a large nuclei. We have cross checked this result by directly calculating the
gluon distribution function in Eq. (2) following the similar calculation for the quark in
Ref. [20, 21]. The derivation of the WW gluon distribution from its operator definition is
provided in Appendix A1.

The second gluon distribution, the Fourier transform of the dipole cross section, is defined
in the fundamental representation4

xG(2)(x, k⊥) = 2

∫
dξ−dξ⊥
(2π)3P+

eixP
+ξ−−ik⊥·ξ⊥〈P |Tr

[
F+i(ξ−, ξ⊥)U [−]†F+i(0)U [+]

]
|P 〉 , (6)

where the gauge link U [−]
ξ = Un [0,−∞; 0]Un [−∞, ξ−; ξ⊥] stands for initial state interac-

tions. Thus, the dipole gluon distribution contains both initial and final state interactions
in the definition.

U [+] and U [−] are the gauge links which appear in the quark distributions in the DIS and
Drell-Yan process, respectively. It is well-known that there is only final state effect in the
DIS, while there is only initial state interaction in the Drell-Yan process. In addition, in
processes involving gluons and more complicated partonic structures, more complex gauge
links may appear, such as combinations of U [+] and U [−] [2]. We will see this in our following
calculations especially in dijet production in pA collisions.

For the second gluon distribution xG(2) as shown in Eq. (6), the gauge link contribution
can not be completely eliminated. In other words, there is no number density interpretation
for this gluon distribution. This is also because it contains both initial and final state

3 To obtain this result, it was assumed that the color charge densities in the nucleus obey a Gaussian

distribution with variance µ2. It was recently argued that this assumption is inconsistent with the QCD

non-linear evolution [19], except for two-point functions.
4 The Fourier transform of the dipole cross section in the adjoint representation is also commonly used,

as it enters single gluon production in pA collisions [22–24]. In the large-Nc limit, it is related to the

convolution of two xG(2).
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Di-hadrons in the correlation limit 

Dominguez, Xiao and Yuan (2010) 

•  kT factorization is recovered in the limit  

BUT : not the naïve factorization, as it involves a new operator definition 
of the UGD, in terms of a quadrupole (as opposed to a dipole previously) 

|k? + k0?| � |k?| , |k0?|

Dominguez, CM, Xiao and Yuan (2011) 

•  the case of di-hadron production in dilute-dense collisions 
similar conclusions, and a linear combination of both UGDs is needed 

DIS and DY SIDIS hadron in pA photon-jet in pA Dijet in DIS Dijet in pA

G(1) (WW) × × × ×
√ √

G(2) (dipole)
√ √ √ √

×
√

TABLE I. The involvement of these two gluon distributions in high energy processes.

processes where it allows us to write the new distributions as convolutions of the two basic
ones.

In the following sections, we will carry out the detailed derivations for the two-particle
correlations in these processes. Quark-antiquark correlation in DIS process will be calculated
in Sec.II. Sec.III will be devoted to the direct photon jet correlation in pA collisions. We
will derive the formalism for dijet correlation in pA collisions in Sec. IV. Summary and
further discussions will be given in Sec. V. In all these calculations, we will show the results
from both transverse momentum dependent approach and the CGC calculations and we will
demonstrate that they are consistent in the correlation limit.

II. DIJET PRODUCTION IN DIS

Despite the nice physical interpretation, it has been argued that the gluon distribution
in Eq. (2) is not directly related to physical observables in the CGC formalism. However,
we will show that xG(1) can be directly probed through the quark-antiquark jet correlation
in DIS,

γ∗TA → q(k1) + q̄(k2) +X , (8)

where the incoming (virtual) photon carries momentum kγ∗ , the target nucleus has momen-
tum PA, and the final state quark and antiquark with momenta k1 and k2, respectively.
Again, we focus on the kinematic region with the correlation limit: q⊥ = |"k1⊥ + "k2⊥| $ P⊥.
The transverse momenta are defined in the center of mass frame of the virtual photon γ∗

and the nucleus A. The calculations are performed for Q2 in the same order of P 2
⊥. As

we discussed in the above, we take the leading order contribution in the correlation limit:
q⊥ $ P⊥, and neglect all higher order corrections. We plot the typical Feynman diagram
for the process of (8) in Fig. 2, where the bubble in the partonic part represents the hard
interaction vertex including gluon attachments to both quark and antiquark lines. Fig. 2 (a)
is the leading Born diagram whose contributions can be associated with the hard partonic
cross section times the gluon distribution from Eq. (2) [3]. In high energy scattering with
the nucleus target, additional gluon attachments are important and we have to resum these
contributions in the large nuclear number limit. Figs. 1(b,c) represent the diagrams con-
tributing at two-gluon exchange order, where the second gluon can attach to either the quark
line or the antiquark line. By applying the power counting method in the correlation limit
(q⊥ $ P⊥), we can simplify the scattering amplitudes with the Eikonal approximation [3].
For example, Fig. 2 (b) can be reduced to:

g

−q+2 + iε
T bΓa , (9)

where q2 is the gluon momentum, T b is the SU(3) color matrix in the fundamental repre-
sentation and Γa represents the rest of the partonic scattering amplitude with color indices
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Conclusions 
 
•  there are two types of transverse momentum dependent 

factorization in QCD (TMD and kT factorization), established in 
different limits 

•  I gave and illustrated a general guiding principle to determine 
the validity (at leading order) of such factorizations 

•  warning: there may be exceptions to the rule … 

•  even when factorization is valid, there are subtleties (soft 
factors, different TMD/UGD definitions, … ) that should be 
treated properly 


