On transverse momentum dependent factorization in perturbative QCD

Cyrille Marquet

Centre de Physique Théorique Ecole Polytechnique

Generalities and jargon

• cross sections in the Bjorken limit of QCD $s \to \infty$, $Q^2 \to \infty$ are expressed as a 1/Q² "twist" expansion $Q^2/s = x$ fixed

$$d\sigma = \sum_{p} f_p \otimes d\hat{\sigma} + O(1/Q^2) \qquad f_p = \text{PDF or TMD}$$

collinear factorization: parton content of proton described by k_T -integrated distributions sufficient approximation for most high- p_T processes

TMD factorization: involves transverse-momentum-dependent (TMD) distributions TMDs are needed in particular cases

Generalities and jargon

• cross sections in the Bjorken limit of QCD $s \to \infty$, $Q^2 \to \infty$ are expressed as a 1/Q² "twist" expansion $Q^2/s = x$ fixed

$$d\sigma = \sum_{p} f_p \otimes d\hat{\sigma} + O(1/Q^2) \qquad f_p = \text{PDF or TMD}$$

collinear factorization: parton content of proton described by k_T -integrated distributions sufficient approximation for most high- p_T processes

TMD factorization: involves transverse-momentum-dependent (TMD) distributions TMDs are needed in particular cases

• cross sections in the Regge limit of QCD $s \to \infty$, $x \to 0$ are expressed as a 1/s "eikonal" expansion $xs = Q^2$ fixed

$$d\sigma = \sum_{p} f_p \otimes d\hat{\sigma} + O(1/s) \qquad f_p = \text{UGD}$$

k_T factorization: parton content described by the un-integrated gluon distribution (UGD)

Collinear factorization

in standard pQCD calculations, the incoming parton transverse momenta are set to zero in the matrix element and are integrated over in the parton densities

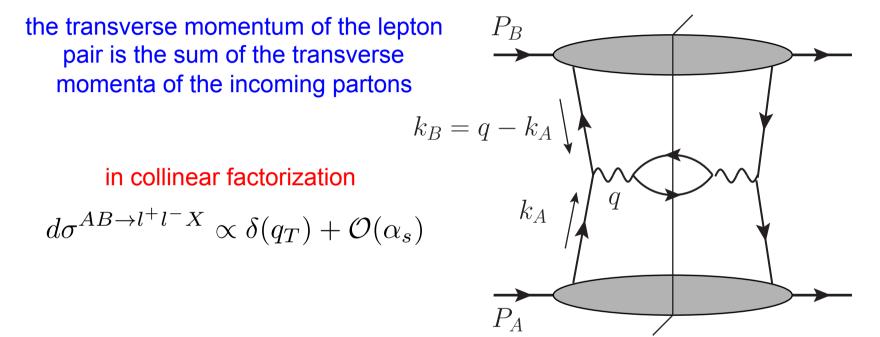
$$d\sigma_{AB \to X} = \sum_{ij} \int dx_1 dx_2 \underbrace{f_{i/A}(x_1, \mu^2) f_{j/B}(x_2, \mu'^2)}_{\mathbf{k_T} \text{ integrated quantities}} d\hat{\sigma}_{ij \to X} + \mathcal{O}\left(\Lambda_{QCD}^2/M^2\right)$$

$$\underbrace{\mathbf{k_T} \text{ integrated quantities}}_{\text{the incoming partons}} \underbrace{\mathbf{k_T} \text{ integrated quantities}}_{\text{the incoming partons}} \underbrace{\mathbf{k_T} \text{ integrated quantities}}_{\text{the projectile hadrons}} \underbrace{\mathbf{k_T} \text{ integrated quantities}}_{\text{the projectile hadrons}}_{\text{the projectile hadrons}} \underbrace{\mathbf{k_T} \text{ integrated quantities}}_{\text{the projectile hadrons}}_{\text{the projectile h$$

in general for a hard process, this approximation is accurate

in some cases however, this is not good enough, and TMD factorization is needed

Drell-Yan process



in this case, TMDs can be useful objects :

$$d\sigma^{AB \to l^+ l^- X} = \sum_{i,j} \int dx_1 dx_2 d^2 k_{1T} d^2 k_{2T} \ f_{i/A}(x_1, \mathbf{k}_{1T}) f_{j/B}(x_2, \mathbf{k}_{2T}) \ d\hat{\sigma}^{ij \to l^+ l^- X}$$

Drell-Yan production is directly sensitive to partonic transverse momenta $d\hat{\sigma}\propto\delta({\bf k}_{1T}+{\bf k}_{2T}-q_{\perp})$

A general guiding rule

• Consider an hadronic collision $A + B \rightarrow C + D + \dots + X$

- if one hadron is involved, TMD and $k_{\rm T}$ factorization OK

- if two hadrons are involved, TMD factorization OK but process dependent (and soft factor needed), k_T factorization OK

- if more than two hadrons are involved, no TMD or $k_{\rm T}$ factorization, except in some special cases and limits

note: dilute-dense colliding hadrons (p+A or p+p at forward rapidities) only count for 1 hadron

A general guiding rule

- Consider an hadronic collision $A + B \rightarrow C + D + \dots + X$
 - if one hadron is involved, TMD and $k_{\rm T}$ factorization OK

- if two hadrons are involved, TMD factorization OK but process dependent (and soft factor needed), k_T factorization OK

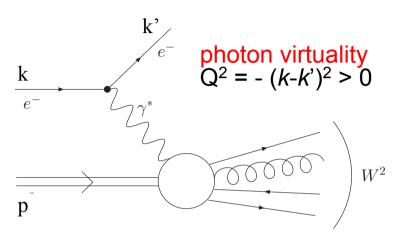
- if more than two hadrons are involved, no TMD or $k_{\rm T}$ factorization, except in some special cases and limits

note: dilute-dense colliding hadrons (p+A or p+p at forward rapidities) only count for 1 hadron

- in many cases, TMD/k_T factorization is broken at some order of the perturbation theory, here I am only discussing the validity at leadingorder
- warning: in cases where TMD/k_T factorization is not valid, it is still applied in phenomenological studies, due to the lack of alternatives

One-hadron case, e.g.: $\gamma^* + p(A) \rightarrow X$ $p + A \rightarrow \gamma^* + X$

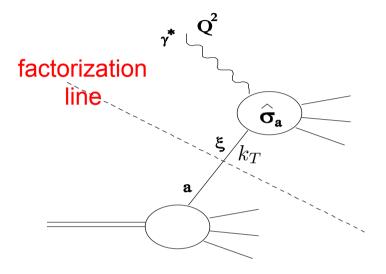
Deep inelastic scattering



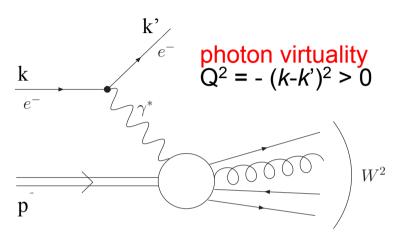
let's consider the two limits in which the cross section can be obtained:

Bjorken limit:

- set k_T =0 in ME and integrate over it in pdfs up to the factorization scale μ^2 - pdfs have ξ dependence and evolve with μ^2 (DGLAP) - a usual scale choice is Q²



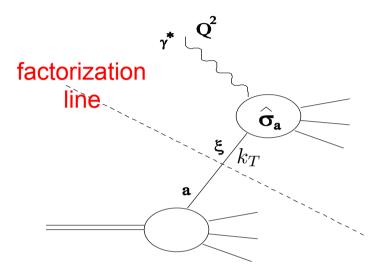
Deep inelastic scattering



let's consider the two limits in which the cross section can be obtained:

Bjorken limit:

- set k_T =0 in ME and integrate over it in pdfs up to the factorization scale μ^2 - pdfs have ξ dependence and evolve with μ^2 (DGLAP) - a usual scale choice is Q²



Regge limit:

set ξ=0 in ME and integrate over it in pdfs
down to the factorization "scale" x
pdfs have k_T dependence and evolve with x (BFKL/BK)
a usual choice is x=x_{Bj}

TMD/ k_T factorization in DIS

- in the Bjorken limit, the natural factorization is not k_T dependent but it can be extended to feature ξ and k_T dependent pdfs (e.g. TMDs), while DGLAP evolution turns into CCS evolution
- in the Regge limit, the factorization is intrinsically k_T dependent and it is equivalent, after Fourier transformation to coordinate space, to the so-called dipole factorization

TMD/k_T factorization in DIS

- in the Bjorken limit, the natural factorization is not k_T dependent but it can be extended to feature ξ and k_T dependent pdfs (e.g. TMDs), while DGLAP evolution turns into CCS evolution
- in the Regge limit, the factorization is intrinsically k_T dependent and it is equivalent, after Fourier transformation to coordinate space, to the so-called dipole factorization

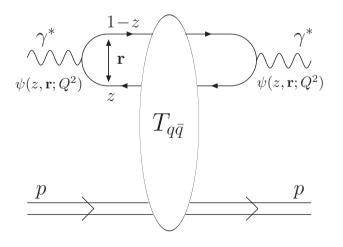
Mueller (1990), Nikolaev and Zakharov (1991)

$$\sigma_{T,L}^{\gamma^* p \to X} = 2 \int d^2 r \, dz \, |\psi_{T,L}(z,\mathbf{r};Q^2)|^2 \underbrace{\int d^2 b \, T_{q\bar{q}}(\mathbf{r},\mathbf{b},x_B)}_{\checkmark}$$

dipole-hadron cross-section

overlap of $\gamma^* \rightarrow q \bar{\bar{q}}$ splitting functions

link to the unintegrated gluon distribution $F(q_{\perp}, x_B) = \int \frac{d^2 r}{(2\pi)^2} \ e^{-iq_{\perp} \cdot \mathbf{r}} [1 - T_{q\bar{q}}(\mathbf{r}, x_B)]$



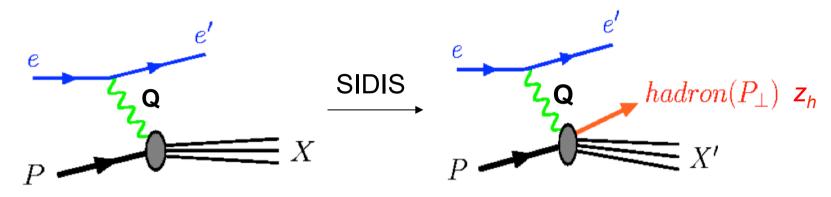
Two-hadron case, e.g.:

 $\gamma^* + p(A) \to h + X$

 $p + p \rightarrow \gamma^* + X$

 $p + A \to h + X$

The dipole factorization in SIDIS



fragmentation into hadron

 $T_{q\bar{q}}$

 $T_{q\bar{q}}$

• the cross section at small x $\Phi(\xi, \mathbf{x}, \mathbf{y}; Q^2) = \psi(\xi, \mathbf{x}; Q^2)\psi^*(\xi, \mathbf{y}; Q^2)$ $\uparrow \qquad \uparrow$ dipoles in amplitude / conj. amplitude

$$\frac{d\sigma^{\gamma^* p \to hX}}{dz_h d^2 P_\perp} = \frac{d\sigma_{T,L}^{\gamma^* p \to qX}}{d\xi d^2 k_\perp} \left(k_\perp = \frac{\xi}{z_h} P_\perp\right) \otimes D_{h/q}(z_h/\xi)$$

$$\frac{d\sigma_{T,L}^{\gamma^* p \to qX}}{d\xi d^2 k_{\perp}} = \int \frac{d^2 x}{2\pi} \frac{d^2 y}{2\pi} e^{-ik_{\perp} \cdot (\mathbf{X} - \mathbf{y})} \Phi_{T,L}(\xi, \mathbf{x}, \mathbf{y}; Q^2) \int d^2 b \left[T_{q\bar{q}}(\mathbf{x}, x_B) + T_{q\bar{q}}(\mathbf{y}, x_B) - T_{q\bar{q}}(\mathbf{x} - \mathbf{y}, x_B) \right]$$

 $\gamma^*(Q)$

McLerran and Venugopalan, Mueller, Kovchegov and McLerran (1999)

Cross section in momentum space

the lepto-production cross section •

$$\frac{d\sigma(ep \rightarrow e'hX)}{d\mathcal{P}} = \frac{\alpha_{em}^2 N_c}{2\pi^3 x_B Q^2} \sum_f e_f^2 \int_{z_h} \frac{dz}{z} \frac{D(z)}{z^2} \int d^2b d^2q_{\perp}F(q_{\perp}, x_B) \mathcal{H}\left(\xi = \frac{z_h}{z}, k_{\perp} = \frac{P_{\perp}}{z}\right)$$
phase space $d\mathcal{P} = dx_B dQ^2 dz_h dP_{\perp}^2$
F.T. of photon wave function
UGD
$$\ell_f^2 = \xi(1-\xi)Q^2$$
massless quarks

oton T

k_T factorization

$$\begin{aligned} \mathcal{H}(\xi,k_{\perp}) &= \left(1-y+\frac{y^2}{2}\right)(\xi^2+(1-\xi)^2) \left|\frac{k_{\perp}}{k_{\perp}^2+\epsilon_f^2} - \frac{k_{\perp}-q_{\perp}}{(k_{\perp}-q_{\perp})^2+\epsilon_f^2}\right|^2 & \text{photon T} \\ &+(1-y)4\xi^2(1-\xi)^2Q^2 \left(\frac{1}{k_{\perp}^2+\epsilon_f^2} - \frac{1}{(k_{\perp}-q_{\perp})^2+\epsilon_f^2}\right)^2 & \text{photon L} \end{aligned}$$

TMD factorization of SIDIS

• the cross section can be factorized in 4 pieces

Collins and Soper (1981), Collins, Soper and Sterman (1985), Ji, Ma and Yuan (2005)

$$\frac{d\sigma(ep \rightarrow e'hX)}{d\mathcal{P}} = \frac{4\pi\alpha_{em}^2}{Q^2} \left(1 - y + \frac{y^2}{2}\right) \int d^2k_{\perp} d^2p_{1\perp} d^2\lambda_{\perp}$$

$$(q(x_B, k_{\perp}; x_B\zeta)D(z_h, p_{1\perp}; \hat{\zeta}/z_h) \longrightarrow \text{TMD ff}$$

$$(TMD \text{ quark distribution} S(\lambda_{\perp}; \rho)H(Q^2, x_B, z_h; \rho)\delta^{(2)}(z_hk_{\perp} + p_{1\perp} + \lambda_{\perp} - p_{\perp})$$

$$(q(x_B, k_{\perp}; x_B\zeta)D(z_h, p_{1\perp}; \hat{\zeta}/z_h) \longrightarrow \text{TMD ff}$$

$$(q(x_B, k_{\perp}; p)H(Q^2, x_B, z_h; \rho)\delta^{(2)}(z_hk_{\perp} + p_{1\perp} + \lambda_{\perp} - p_{\perp})$$

$$(q(x_B, k_{\perp}; p)H(Q^2, x_B, z_h; \rho)\delta^{(2)}(z_hk_{\perp} + p_{1\perp} + \lambda_{\perp} - p_{\perp})$$

$$(q(x_B, k_{\perp}; p)H(Q^2, x_B, z_h; \rho)\delta^{(2)}(z_hk_{\perp} + p_{1\perp} + \lambda_{\perp} - p_{\perp})$$

$$(q(x_B, k_{\perp}; p)H(Q^2, x_B, z_h; \rho)\delta^{(2)}(z_hk_{\perp} + p_{1\perp} + \lambda_{\perp} - p_{\perp})$$

$$(q(x_B, k_{\perp}; p)H(Q^2, x_B, z_h; \rho)\delta^{(2)}(z_hk_{\perp} + p_{1\perp} + \lambda_{\perp} - p_{\perp})$$

$$(q(x_B, k_{\perp}; p)H(Q^2, x_B, z_h; \rho)\delta^{(2)}(z_hk_{\perp} + p_{1\perp} + \lambda_{\perp} - p_{\perp})$$

$$(q(x_B, k_{\perp}; p)H(Q^2, x_B, z_h; \rho)\delta^{(2)}(z_hk_{\perp} + p_{\perp} + \lambda_{\perp} - p_{\perp})$$

$$(q(x_B, k_{\perp}; p)H(Q^2, x_B, z_h; \rho)\delta^{(2)}(z_hk_{\perp} + p_{\perp} + \lambda_{\perp} - p_{\perp})$$

$$(q(x_B, k_{\perp}; p)H(Q^2, x_B, z_h; \rho)\delta^{(2)}(z_hk_{\perp} + p_{\perp} + \lambda_{\perp} - p_{\perp})$$

$$(q(x_B, k_{\perp}; p)H(Q^2, x_B, z_h; \rho)\delta^{(2)}(z_hk_{\perp} + p_{\perp} + \lambda_{\perp} - p_{\perp})$$

$$(q(x_B, k_{\perp}; p)H(Q^2, x_B, z_h; \rho)\delta^{(2)}(z_hk_{\perp} + p_{\perp} + \lambda_{\perp} - p_{\perp})$$

$$(q(x_B, k_{\perp}; p)H(Q^2, x_B, z_h; \rho)\delta^{(2)}(z_hk_{\perp} + p_{\perp} + \lambda_{\perp} - p_{\perp})$$

$$(q(x_B, k_{\perp}; p)H(Q^2, x_B, z_h; \rho)\delta^{(2)}(z_hk_{\perp} + p_{\perp} + \lambda_{\perp} - p_{\perp})$$

$$(q(x_B, k_{\perp}; p)H(Q^2, z_h, q)H(Q^2, z_h; \rho)\delta^{(2)}(z_hk_{\perp} + p_{\perp} + \lambda_{\perp} - p_{\perp})$$

$$(q(x_B, k_{\perp}; p)H(Q^2, z_h; \rho)\delta^{(2)}(z_hk_{\perp} + p_{\perp} + \lambda_{\perp} - p_{\perp})$$

$$(q(x_B, k_{\perp}; p)H(Q^2, q)H(Q^2, q)$$

(the gluon TMD piece is power-suppressed)

not the naïve factorization I wrote at the beginning (without soft factors)

The TMD quark distribution

• operator definition

$$q(x,k_{\perp}) = \frac{1}{2} \int \frac{d^2 \xi_{\perp} d\xi^-}{(2\pi)^2} e^{-ixP^+\xi^- - ik_{\perp} \cdot \xi_{\perp}} \langle P | \bar{\Psi}(\xi) \mathcal{L}_{\xi} \gamma^+ \mathcal{L}_0 \Psi(0) | P \rangle$$

quark fields also have transverse separation

Wilson lines needed for gauge invariance

The TMD quark distribution

operator definition

$$q(x,k_{\perp}) = \frac{1}{2} \int \frac{d^2 \xi_{\perp} d\xi^-}{(2\pi)^2} e^{-ixP^+\xi^- - ik_{\perp}\cdot\xi_{\perp}} \langle P|\bar{\Psi}(\xi)\mathcal{L}_{\xi}\gamma^+\mathcal{L}_0\Psi(0)|P\rangle$$

quark fields also have transverse separation

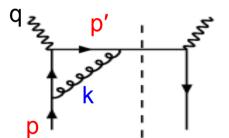
• how factorization works

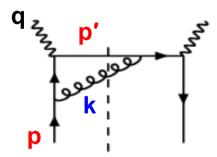
possible regions for the gluon momentum

k collinear to p (parton distribution) k collinear to p' (parton fragmentation) k soft (soft factor) k hard (α_s correction)

gauge links make TMDs process dependent
 e.g. f[⊥]_{1T}(x, k_⊥)_{DY} = −f[⊥]_{1T}(x, k_⊥)_{SIDIS}

Wilson lines needed for gauge invariance





Three-hadron case, e.g.: $\gamma^* + p(A) \rightarrow h_1 + h_2 + X$ $p + p \rightarrow h + X$ $p + A \rightarrow h_1 + h_2 + X$

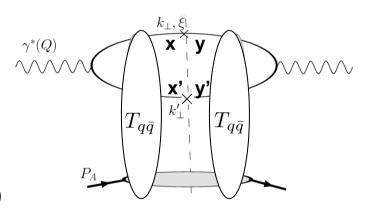
Di-hadron production in γ^* +p(A)

• the cross section in the dipole picture

$$\frac{d\sigma_{T,L}^{\gamma^* p \to q\bar{q}X}}{d^2 k_{\perp} d^2 k'_{\perp}} = \int \frac{d^2 x}{2\pi} \frac{d^2 y}{2\pi} \frac{d^2 x'}{2\pi} \frac{d^2 y'}{2\pi} e^{-ik_{\perp} \cdot (\mathbf{X} - \mathbf{y})} e^{-ik'_{\perp} \cdot (\mathbf{X}' - \mathbf{y}')} \int d\xi \, \Phi_{T,L}(\xi, \mathbf{X} - \mathbf{x}', \mathbf{y} - \mathbf{y}'; Q^2) \\ \times [T_{q\bar{q}}(\mathbf{X} - \mathbf{x}', x_B) + T_{q\bar{q}}(\mathbf{y} - \mathbf{y}', x_B) - T_{q\bar{q}\bar{q}q}(\mathbf{x}, \mathbf{x}', \mathbf{y}', \mathbf{y}, x_B)]$$

because of the 4-point function $T_{q\bar{q}\bar{q}q}$, there is no k_T factorization (the cross section is not a linear function of the UGD)

• SIDIS was a special case in SIDIS, the k'_{\perp} integration sets **x**'=**y**', and then $T_{q\bar{q}\bar{q}q}(\mathbf{x}, \mathbf{x}', \mathbf{x}', \mathbf{y}, x_B) = T_{q\bar{q}}(\mathbf{x} - \mathbf{y}, x_B)$



this cancellation of the interactions involving the spectator antiquark in SIDIS is what led to k_T factorization

• in the Bjorken limit, there is no TMD factorization either

Collins and Qiu (2007), Xiao and Yuan (2010)

Di-hadrons in the correlation limit

• k_T factorization is recovered in the limit $|k_{\perp} + k'_{\perp}| \ll |k_{\perp}|$, $|k'_{\perp}|$

$$d\sigma^{\gamma^* p \to q\bar{q}X} = \int d^2k_\perp d^2k'_\perp F_{WW}(|k_\perp + k'_\perp|, x) \ d\hat{\sigma}^{\gamma^* g \to q\bar{q}}$$

BUT : not the naïve factorization, as it involves a new operator definition of the UGD, in terms of a quadrupole (as opposed to a dipole previously)

$$F_{WW}(k_{\perp}, x) \propto \int \frac{d^2v}{(2\pi)^2} \frac{d^2v'}{(2\pi)^2} e^{-ik_{\perp} \cdot (v-v')} \left\langle \operatorname{Tr}\left[\partial_i U(v)\right] U^{\dagger}(v') \left[\partial_i U(v')\right] U^{\dagger}(v) \right\rangle_x$$

Dominguez, Xiao and Yuan (2010)

Di-hadrons in the correlation limit

• k_T factorization is recovered in the limit $|k_{\perp} + k'_{\perp}| \ll |k_{\perp}|$, $|k'_{\perp}|$

$$d\sigma^{\gamma^* p \to q\bar{q}X} = \int d^2k_\perp d^2k'_\perp F_{WW}(|k_\perp + k'_\perp|, x) \ d\hat{\sigma}^{\gamma^* g \to q\bar{q}}$$

BUT : not the naïve factorization, as it involves a new operator definition of the UGD, in terms of a quadrupole (as opposed to a dipole previously)

$$F_{WW}(k_{\perp}, x) \propto \int \frac{d^2v}{(2\pi)^2} \frac{d^2v'}{(2\pi)^2} e^{-ik_{\perp} \cdot (v-v')} \left\langle \operatorname{Tr}\left[\partial_i U(v)\right] U^{\dagger}(v') \left[\partial_i U(v')\right] U^{\dagger}(v) \right\rangle_x$$

Dominguez, Xiao and Yuan (2010)

• the case of di-hadron production in dilute-dense collisions similar conclusions, and a linear combination of both UGDs is needed

	DIS and DY	SIDIS	hadron in pA	photon-jet in pA	Dijet in DIS	Dijet in pA
$G^{(1)}$ (WW)	×	×	×	×	\checkmark	\checkmark
$G^{(2)}$ (dipole)	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark

Dominguez, CM, Xiao and Yuan (2011)

Conclusions

- there are two types of transverse momentum dependent factorization in QCD (TMD and k_T factorization), established in different limits
- I gave and illustrated a general guiding principle to determine the validity (at leading order) of such factorizations
- warning: there may be exceptions to the rule ...
- even when factorization is valid, there are subtleties (soft factors, different TMD/UGD definitions, ...) that should be treated properly