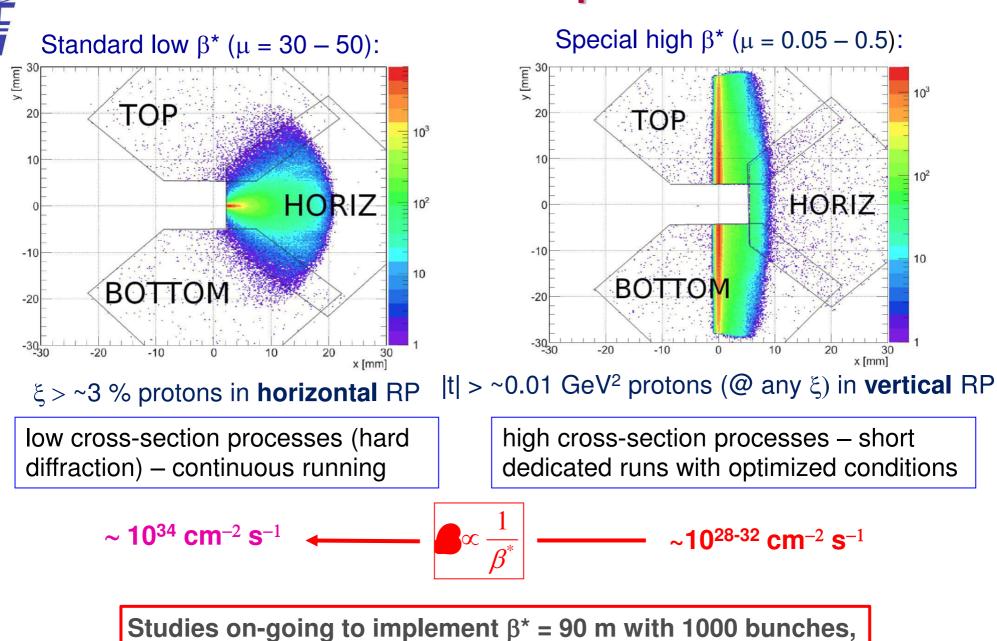
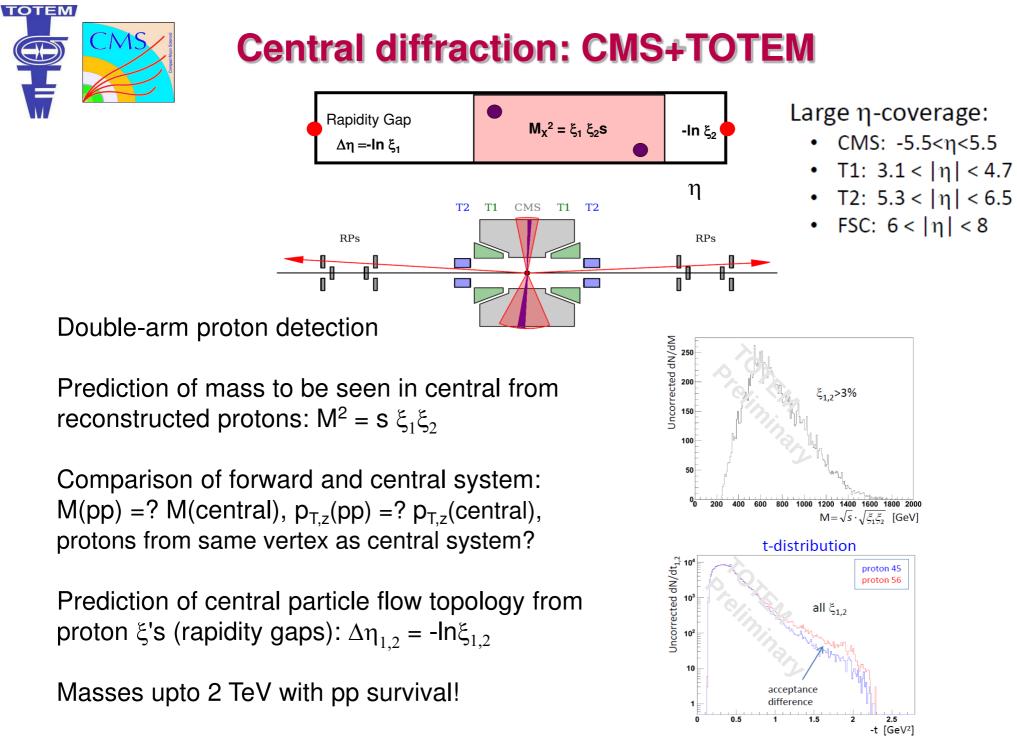
Central diffractive studies with protons

K. Österberg, Department of Physics, University of Helsinki & Helsinki Institute of Physics

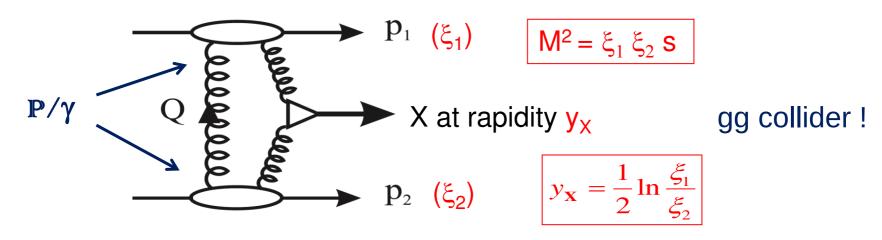

Cracow workshop

- low mass CD exclusive states
- missing mass topology in CD events
- . CD exclusive jets


Analysis demonstrated on data from combined CMS-TOTEM runs in July 2012 at $\sqrt{s} = 8$ TeV !!

Different LHC Optics

TOTEM


pileup ~0.05-0.5; \mathcal{L} ~10³¹⁻³² cm² s⁻¹ \rightarrow 1-10 pb⁻¹/day

Realistic trigger crucial for $\mu > \sim 0.5$ (see Valentina's talk)

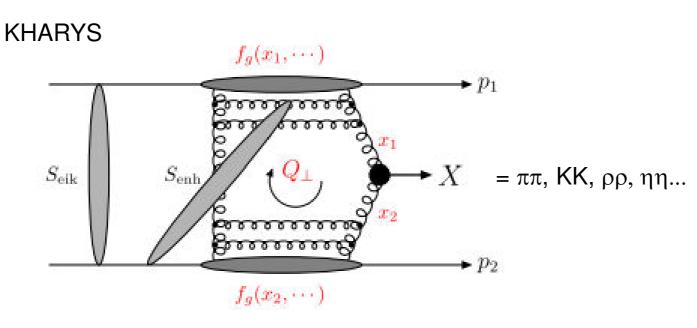
Exclusive central diffraction

exchange of colour singlets with vacuum quantum numbers \Rightarrow Selection rules for system X: J^{PC} = 0⁺⁺, 2⁺⁺

X = $\pi\pi$, KK, ρρ, ηη, χ_{c0} , χ_{cb} , jets, ? (unknown)....

$$\beta^* = 90 - 0.5 \text{ m}$$

$$\mu = 0.05 - 50$$


$$M = \pi\pi \text{ threshold} - \sim 2 \text{ TeV},$$

$$\sigma = O(\mu b) - O(fb)$$

$$F(e \times ib)^{i}$$

Low mass CD exclusive states

pp \rightarrow p + di-meson + p events: $\pi\pi$ threshold – O(10 GeV) events with RP double arm + charged particles in CMS tracker

p/K/p identification using CMS tracker dE/dx

masses reconstructed from charged particles in CMS tracker with excellent resolution

reconstruct decay chains (for example $\rho \rightarrow \pi\pi$)

study low mass resonance production in CED: gluon-rich resonances?

small / large pT(pp) \Rightarrow parallel / diagonal pomeron topologies

Low mass CD exclusive states

REF: public CMS-TOTEM result before finalization of yellow report ?

What has been measured @ 8 TeV

 $\beta^{*}{=}90m{:}~3$ bunches, $\mu \sim 0.05,~L_{int} \sim 0.8~nb^{\text{-1}}$ Trigger: RP double arm

nh⁺ nh⁻ only central states (n = 1 - 4) pT(pp) = pT(central) (within resolution) $\pi/K/p$ identification using CMS tracker dE/dx Statistics limited! Cuts:

- Vertex ≤ 1 (suppress pileup)
- $\xi \sim 0$ (at 3σ) protons (enhance exclusivity)
- RP vertex (suppress pileup)
- T1 and T2 gaps (enforce low-ξ & suppress MB pileup)
- charge balance (suppress incomplete reconstruction)

Challenges:

. . .

- RP double arm trigger rate for 1k bunches
- partial rapidity gap coverage

[T1, T2, Castor, FSC....]

- background (low pile-up)
- $\sigma(x \text{ vertex [RP]}) \sim 10 \ \mu\text{m}$ resolve pileup in RP
- limited pT range for dE/dx identification
- n > 2 combinatorics becomes problematic
- missed neutrals/very low pT tracks

Run Scenario:

- $\beta^*=90m$ Low pileup (1k bunches & low μ (~ 0.05)) Improved with timing in vertical RPs

Missing mass topology in CD events

CD: gg collisions upto 2 TeV with known initial state

Can some "new physics" have escaped detection in standard searches? And what if that new physics includes "missing momentum/mass" signature?

Look in CD events (pp) with <u>missing momentum/mass</u> with respect to initial pp state $M(particle flow + missing momentum) \le M(pp)$

Also M(pp) in CD @ LHC >> $\sqrt{s_{LEP,max}}$, hence more energy to create "new physics"

Dark matter:

prefered models: WIMP 100 GeV – 2 TeV $\Rightarrow \sigma$'s small (~ fb or smaller), high lumi

alternative models (asymmetric): M_{DM} could be as low as 5 GeV, $\sigma(pp \rightarrow p + X DM + p) = ?$

Other scenarios?

Missing mass topology in CD events

REF: LHC Seminar- TOTEM Physics program, analysis and results- H. Niewiadomski

What has been measured @ 8 TeV

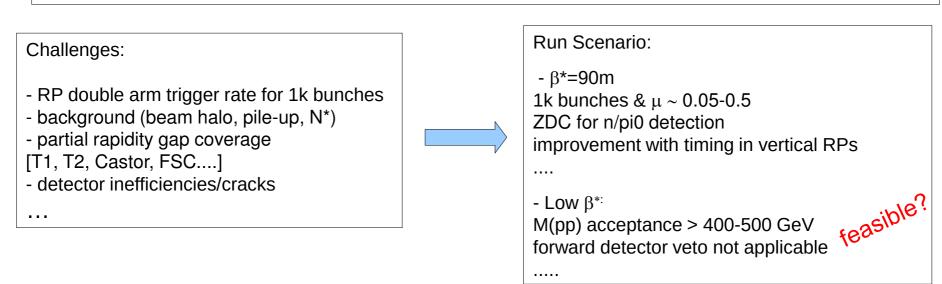
 $\beta^*=90m$: 3 (112) bunches, $\mu \sim 0.05$, $L_{int} \sim 0.8$ (43) nb⁻¹ Trigger: RP double arm (central jets (pT>25)) M(particle flow + missing momentum) \leq M(pp)

particles violating ξ -predicted gaps $\Delta \eta_{1,2}$

 \rightarrow No candidates in dijet sample

escaping-mass candidates (p(particle flow) \neq p(pp)) Additional particles NOT observed in forward detectors where allowed/required by ξ -predicted gaps

 $\rightarrow\,$ Few candidates with $\Delta M \geq 400~GeV$

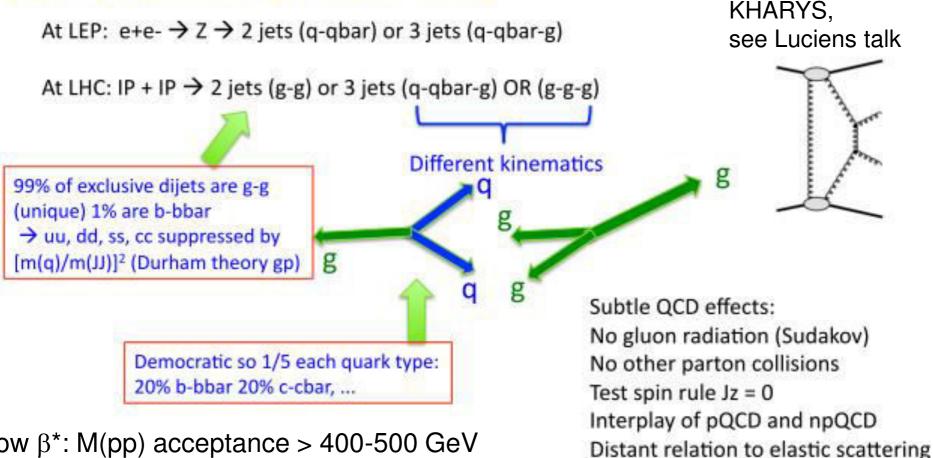

Cuts:

- Vertex ≤ 1
- RP near edge area removed (background suppression)
- RP top-top/bot-bot topology
- $\xi > 1.5\% \Rightarrow M(pp) > 120 \text{ GeV}$ (better resolution)

8

 FSC empty (suppress background)

Additional particles required (but NOT observed) in forward detectors forbidden by ξ -predicted gaps \rightarrow No candidates



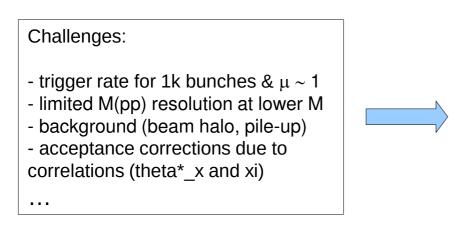
CD exclusive jets

cross-sections, 3j/2j ratio, gluon jet studies

CDF Observed X = JJ at vs = 1.96 TeV to E_T = 30 GeV

Low β^* : M(pp) acceptance > 400-500 GeV $\Rightarrow \sigma$'s small (fb), need high lumi

High β^* : see all M(pp) but Δ M(pp) ~ O(10's GeV) with 1k bunches & μ ~ 0.5 can reach L_{int} ~ O(5-10 pb⁻¹/day) !! σ (M(pp) > 75 GeV) = ~0.2 nb @ s = 13 TeV (KHARYS)



REF: LHC Seminar- TOTEM Physics program, analysis and results- H. Niewiadomski CMS-DP-2013-004

What has been measured @ 8 TeV $\beta^*=90m$: 112 bunches, $\mu \sim 0.05$, $L_{int} \sim 43nb^{-1}$ Trigger on central jets (pT>25) Forward & central consistent (within resolution) M(particle Flow) = M(pp) p(particle Flow) = p(pp) \rightarrow Few candidates; none M(jj) =M(pp) Lack of statistics!

Cuts:

- Vertex ≤ 1
- RP near edge area removed (background suppression)
- RP top-top/bot-bot topology
- $\xi > 1.5\% \Rightarrow M(pp) > 120 \text{ GeV}$ (better resolution)
- FSC empty (suppress background)

Run Scenario:

- β***=90**m

1k bunches & $\mu \sim 0.5$ / $\mu \sim 0.05$ longer run time 1st option improved by timing in vertical RPs 2nd option better for having a low jet pT threshold

- Low $\beta^{*:}$ M(pp) acceptance > 400-500 GeV pile-up an issue high pT cut on jets

••••

Plans for yellow report contributions

Low mass CD exclusive states (low lumi only):

Brief description of the results obtained during LHC-RUN-I (or description of analysis strategy)

Estimate of performances at higher energies including most suitable running scenario

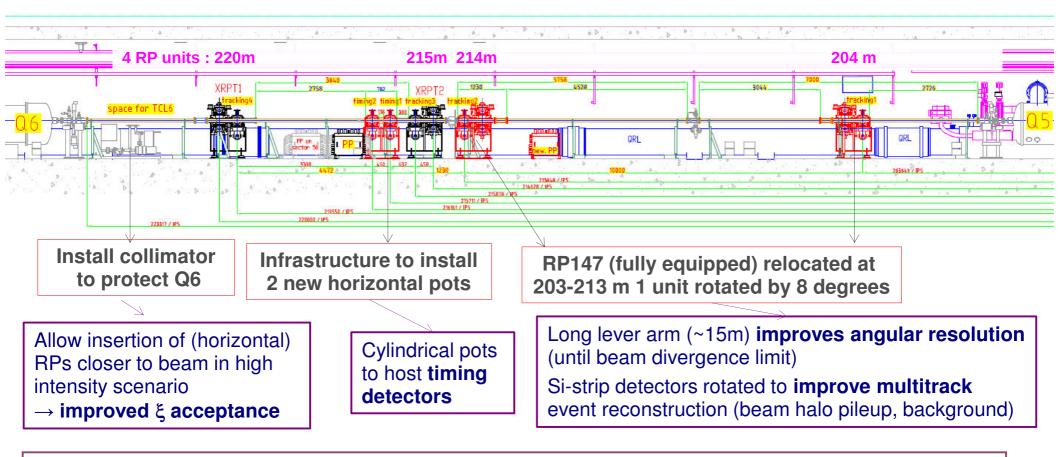
<u>Missing mass topology in CD events (low lumi & high lumi):</u> Description of analysis strategy and summarize prospects/predictions

Estimate of performances at higher energies including most suitable running scenario

CD exclusive jets (low lumi & high lumi):

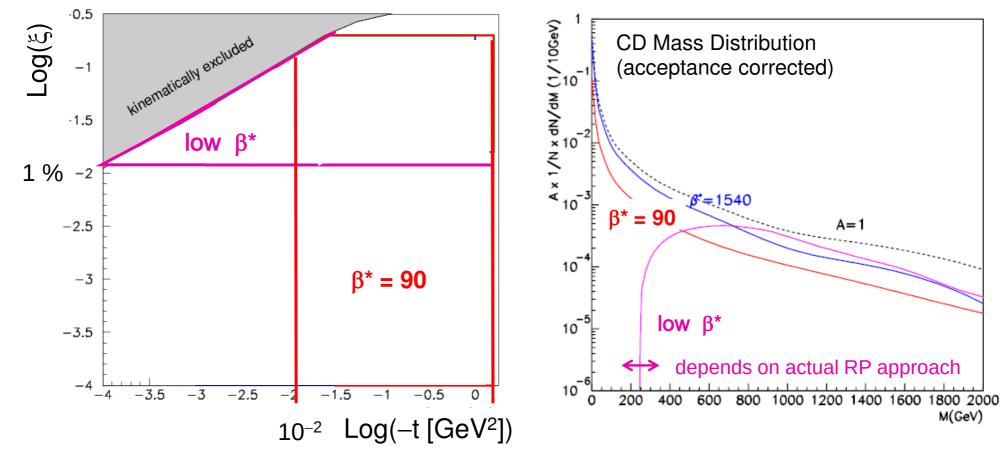
Full analysis description (one of the channels of common CMS-TOTEM studies) or description of analysis strategy plus summary of prospects

Estimate of performances at higher energies including most suitable running scenario



RP consolidation & upgrade summary

mechanics/infrastructure in LS1, timing sensors/replacement of Si strips later



• RP system will consist of 4 RP units/arm, each with 2 vertical + 1 horizontal pots equipped with 10 planes Si-strip detectors, with full trigger capability

• Extreme flexibility in using 4 units according to running scenario; possibility to dedicate pots to new **Si-pixel detectors** as well as to **timing detectors** with low material budget

Proton & CD mass acceptance

β^* [m]	$\sigma(\Theta_x^*)$ [µrad]	$\sigma(\Theta_y^*)$ [µrad]	$\sigma(t) \; [\text{GeV}^2]$	$\sigma(\Phi^*)$ [rad]	$\sigma(\xi)$	$\sigma(M)$ [GeV]
90 (no vtx.)	17	2.3	$0.22 t ^{0.67}$	$0.075/ t ^{0.59}$	$0.003 \div 0.006$	$40 \div 200$
90 (w. vtx.)	5	2.3	$0.13 t ^{0.79}$	$0.026/\sqrt{ t }$	0.0012	$10 \div 100$
0.55	$32 \div 35$	30	$0.45\sqrt{ t }$	$0.23/\sqrt{ t }$	$0.001 \div 0.007$	$(0.025\div 0.03)M$

Exception: for very low $|\xi|$ can be neglected improving σ (θ_x^*) \approx 2.3 µrad = beam divergence