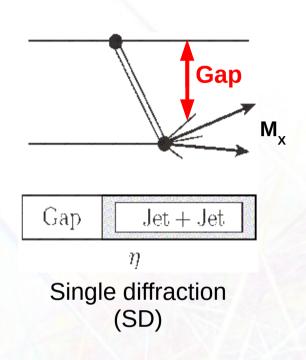
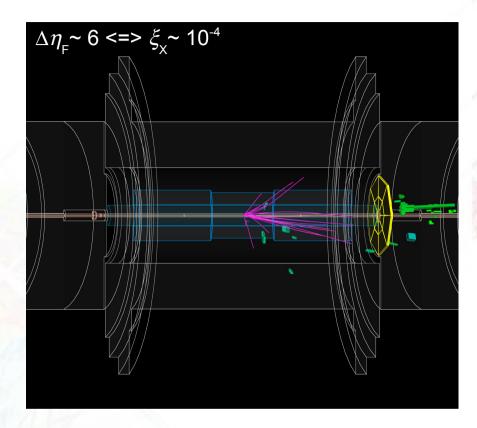


Rapidity gaps in diffractive dijets (with proton tag) Monte Carlo feasibility studies


Vlastimil Kůs, Marek Taševský, Oldřich Kepka

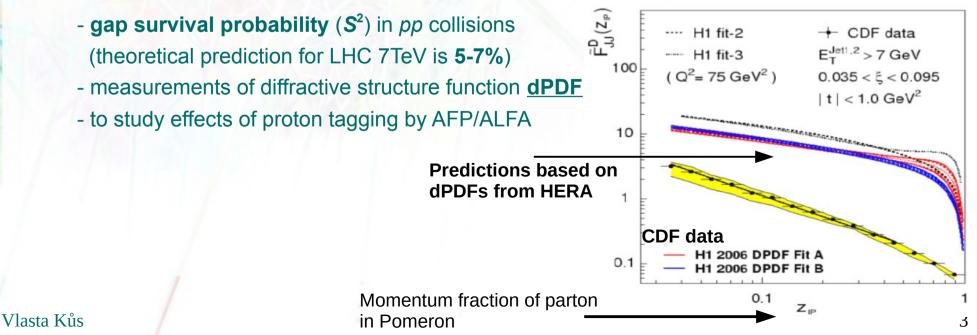

Institute of Physics Academy of Sciences of the Czech Republic

18th November 2013

III Workshop on QCD and Diffraction at the LHC

Diffractive dijets

- Single diffraction processes of the form … pp->pX
 Exchange of colorless object with vacuum quantum numbers (Pomeron) => only dissociated-proton's remnants, no other hadronic activity in large areas of η
- Typical signature → <u>rapidity gaps</u> (Δη_F) ... Δη_F ~ -Inξ_X, ξ_X = M_X² / s A bigger distance from the edge of the detector (η=4.9) to the closest cluster or track with p_x>200 MeV.
- Low pile-up required for gap recognition, proton tagging could help


Goals and motivations

Main motivation

Diffraction first observed at HERA (ep collisions). Diffractive PDF measured.

Then studied at Tevatron (*pp*_bar collisions). Structure function measured $\sim 10x$ smaller than HERA's dPDFs predictions for *pp*_bar collisions (rescattering of dissociated system X with intact proton) \rightarrow Gap Survival Probability

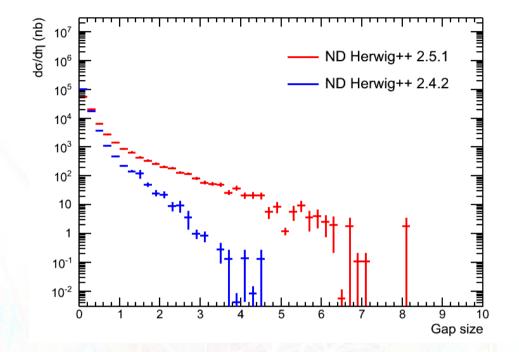
Goals

MC truth studies

- Truth studies of Pythia 6, 8, Herwig++ and Pomwig based on private production Herwig++ ... versions 2.4.2 and 2.5.1 (tunes UE-EE-3 and UE7-2) Pythia ... versions 6.4.23 (tune AMBT1) and 8.150 (AUET2B) Pomwig ... version 2.0.2
- Event selection dijet events, $p_{T}^{\text{jets}} > 20 \text{ GeV}$

(jet reconstruction algorithm – FastJet 3.0.0)

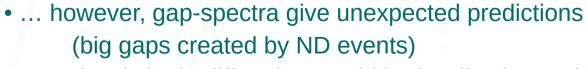
- Gap definition largest gap in η (with no stable truth particle with p_{T} >200 MeV) to the edge of detector ($|\eta|$ <4.9)
- Significant <u>differences</u> between <u>ND Herwig and Pythia</u> observed
 - ND Herwig provides much slower gap spectrum fall


Due to the difference in <u>hadronisation models</u>.

Herwig++: *clustering hadr.* (smaller p_{T} /multiplicities in fwd region)

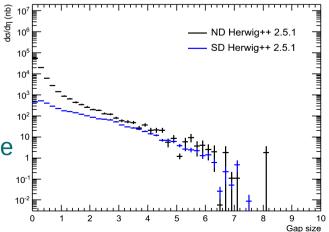
Pythia: string hadronization

Discrepancies in ND gap spectra



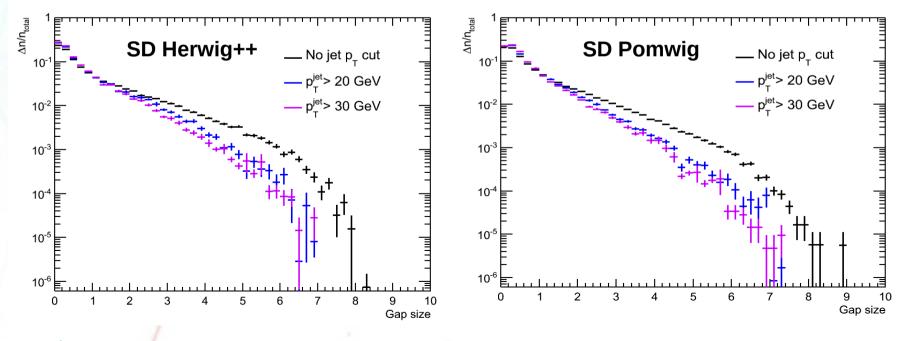
Gaps calculated by taking into account particles with $p_{\tau} > 200$ MeV only.

Jet p_{T} > 20 GeV cut applied to leading and sub-leading jets.

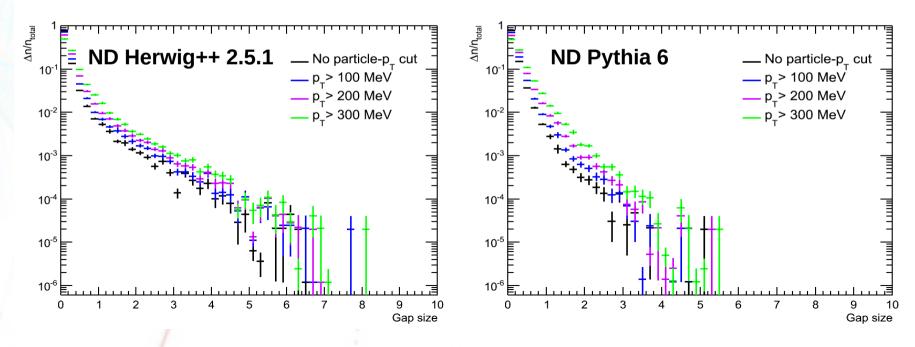

Herwig++ 2.4 doesn't describe non-diffractive ATLAS data well

 \rightarrow newer version (2.5) and tunes should be used

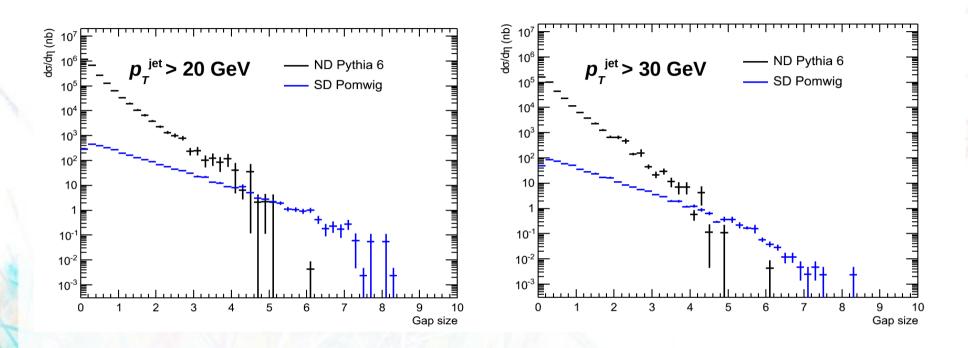
→ hard single diffraction would be hardly observable This behavior also observed for soft diffraction (Eur. Phys. J. C72 (2012) 1926)


Vlasta Kůs

Influence of jet momentum cut


- The intention is to study single diffraction in hard dijet events

 → requirement on presence of <u>at least 2 jets with p</u>^{jet} > 20 GeV
- Due to this p_{T}^{jet} requirement we loose the diffractive plateau in gap-size distributions
- In plots below, we can't see any plateau even for histograms with no jet $p_{_{T}}$ cut as these events were generated with $p_{_{T}}^{_{parton}} > 7$ GeV requirement



Influence of p_{τ}^{min} -particle cut

- The tracker and calorimeter have limited resolution we can't see particles that are too soft
 - \rightarrow need to set some **min.** p_{τ} **cut** on particles to mimic these conditions
- By considering only particles above certain threshold we arbitrarily increase gap-sizes
- Tests with several p_{T} thresholds to estimate this influence ... ND Herwig++ ... ~ 2x-2.5x bigger yields for $\Delta \eta_{F}$ > 1 in p_{T} >200MeV case ND Pythia 6 ... ~ 2.5x-3x bigger yields for $\Delta \eta_{F}$ > 1 in p_{T} >200MeV case

Gap spectra Generator level

Plots include KMR prediction of S^2 (gap survival probability) for CMS energy 7 TeV protonproton collisions ... $S^2 = 6 \%$

Significant gap spectra fall with increasing p_{τ} cut, no plateau observed due to the presence of hard dijet system.

By using 20 GeV jet cut we gain about one order of magnitude in σ compared to 30 GeV cut. Not possible to go below 20 GeV – no JES available.

Vlasta Kůs

Gap spectrum - summary

Generator level

Cross-sections (nb) for different gap sizes $\Delta \eta_{gap}$ and p_T^{jet} >20GeV, S^2 = 0.06

	$\Delta \eta_{_{\rm F}}$ > 3	$\Delta \eta_{\rm F}^{}>4$	$\Delta \eta_{_{ m F}}$ > 5
ND Pythia	155	18	0.4
SD Pomwig	394	127	33
SD Pomwig * S ²	1.2	0.4	0.1

In total ... $\Delta \eta_{\rm F} > 3$: SD*S² / ND = 0.15 $\Delta \eta_{\rm F} > 4$: SD*S² / ND = 0.42 $\Delta \eta_{\rm F} > 5$: SD*S² / ND = 5

For measurement, improvement could be achieved by proton tagging by forward detectors.

Vlasta Kůs

Current work and future prospects

- This was a 7TeV feasibility study before looking at data
 Significant discrepancies in ND modeling between Herwig++ and Pythia, no diffractive plateau observed due to the requirement on presence of hard dijet system, SD/ND ~ 0.4 for gaps bigger than 4 (gap survival probability included)
- Currently working on hard SD measurement of rapidity gaps on ATLAS low-pileup data (early 2010 data periods)
 Tuning triggers, selection cuts, getting a handle on ATLAS sensitivity to large gap events, getting a gap survival probability
- Will look with Tim Martin on AFP related extension of dijet diffractive analysis
 - MC feasibility study at 13TeV with addition of an intact proton tag in AFP/ALFA (based on acceptance in t, ξ variables)
 - will be based on current 7TeV analysis and cut definition tuning
 - aiming for LPCC report in Spring 2014