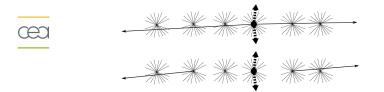
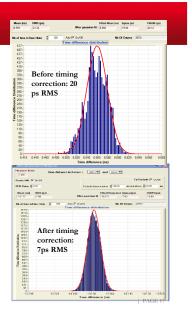
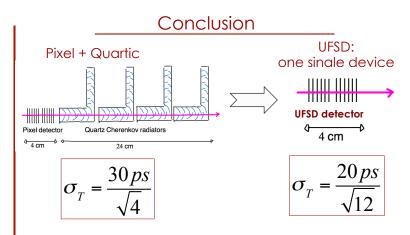
Plans and prospects: high lumi


Rafał Staszewski

Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

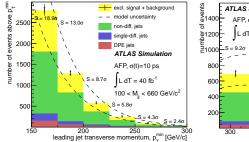
20 November 2013, Cracow

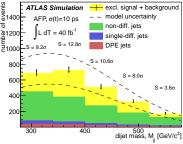

Forward detectors measurement


- Proton missing mass measurement within 3% in case of double tag
- It has to match the central mass for signal. Can match as well for pile-up backgrounds as statistical fluctuations
- Double tag probability from pile-up protons on forward detectors (no mass requirement) :
 0.32 (μ = 50)
 0.66 (μ = 100)
 0.93 (μ = 200)

TIMING RESOLUTION

- First measurement: 2 pulses with 10ns distance. 3 kHz rate
- Measurement performed for 6.4 GPSPS sampling
- 20 ps RMS resolution on Delta T before any correction
- 7 ps RMS after INL timing correction only
- No tail in the distribution.
- No hit "out of time" due to mestabilities, etc...


AFP meeting, CERN nov 6th 2013



 Silicon detector with gain of ~ 10 are well suited for combining excellent position and timing resolution
 First prototype very promising

16

Number of Events ($< \mu >= 23$)

leading jet transverse momentum distribution above a given threshold

mass of the jet system distribution

- Double tag requirement → central mass > 300 GeV → leading jet *p*_T > 150 GeV → relatively small cross section → inverse femtobarns of data needed → high pileup environment is a must
- Very challenging measurement.
- Impossible without forward proton detectors.
- Improvement of uncertainties coming from the Tevatron CDF measurements by about one order of magnitude.

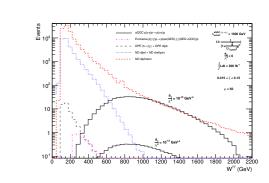
Forward proton tagging potential to probe anomalous gauge couplings at the LHC energies

- Previous work on WWγγ,ZZγγ and WWγ couplings:
 E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010)
 - Sensitivities on QGC improved by more than four orders of magnitude compared to LEP studies and more than two compared to D0/CMS results

Search for anomalous $\gamma\gamma \rightarrow \gamma\gamma$ couplings at the LHC and test of the electroweak theory 2 / 25

Conclusions

C	E	ĩ	C
~	\sim	\sim	~

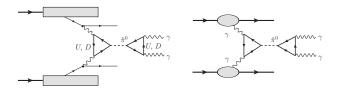

- Forward proton tagging at the LHC seems promising to probe **aQGC**
 - WWγγ and ZZγγ couplings already studied with positive outputs (constrains improved by a factor > 100)

E. Chapon, C. Royon, O. Kepka, Phys. Rev. D **81** (2010)

- A first look at the $\gamma\gamma \rightarrow \gamma\gamma$ couplings shows that we will be able to probe them down to a few 10^{-13} GeV $^{-4}$
- Waiting for final outputs from theorists (Discussions with S. Fichet and G.von Gersdorff)

Search for anomalous $\gamma\gamma \to \gamma\gamma$ couplings at the LHC and test of the electroweak theory 23 / 25

Mass distribution of signal and backgrounds


■ 0.015 < ξ < 0.15, $|\eta|$ < 2.37, $p_{T1,2}$ > 50GeV

 $\hat{\mathbf{P}}$

By requesting $W^{\gamma\gamma} > 600 \text{ GeV}$, Only pile-up backgrounds remain

Search for anomalous $\gamma\gamma \rightarrow \gamma\gamma$ couplings at the LHC and test of the electroweak theory 12 / 25

Production of technipions

- γγ, WW, ZZ and mixed terms in the intermediate state in inlusive processes.
- $\gamma\gamma$, (γZ , $Z\gamma$ and ZZ not included) in exclusive process.

9/9