

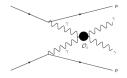
Search for anomalous $\gamma\gamma \rightarrow \gamma\gamma$ couplings at the LHC and test of the electroweak theory

Workshop on QCD and Diffraction at the LHC

Matthias Saimpert O. Kepka, B. Lenzi, C. Royon

CEA Saclay - Irfu/SPP

20/11/2013

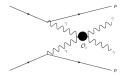

Previous work on WWγγ,ZZγγ and WWγ couplings:
 E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010)

- Previous work on WWγγ,ZZγγ and WWγ couplings:
 E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010)
 - Sensitivities on QGC improved by more than four orders of magnitude compared to LEP studies and more than two compared to D0/CMS results

- Previous work on WWγγ,ZZγγ and WWγ couplings:
 E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010)
 - Sensitivities on QGC improved by more than four orders of magnitude compared to LEP studies and more than two compared to D0/CMS results
- High potential for forward proton tagging in probing aQGC (CMS-TOTEM, AFP)

- Previous work on WWγγ,ZZγγ and WWγ couplings:
 E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010)
 - Sensitivities on QGC improved by more than four orders of magnitude compared to LEP studies and more than two compared to D0/CMS results
- High potential for forward proton tagging in probing aQGC (CMS-TOTEM, AFP)
 - Use of photon induced processes
 - Dramatic background reduction: photon flux dominant over pomeron flux at high p_T
 - Strong kinematics constraints: all final state particles are detected

$\gamma\gamma\to\gamma\gamma~{\rm couplings}$


œ

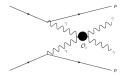
Direct coupling absent from the SM

New couplings predicted by composite Higgs, extra dimensions, ...

No constraints from experiments

$\gamma\gamma\to\gamma\gamma~{\rm couplings}$

œ


Direct coupling absent from the SM

New couplings predicted by composite Higgs, extra dimensions, ...

No constraints from experiments

- Small couplings expected \rightarrow very high luminosity required \rightarrow high pile-up conditions ($\mu > 50$). (300 fb⁻¹ of data expected at the LHC at $\sqrt{s} = 14$ TeV)
- **Huge background** in the regular channel (SM $\gamma\gamma$ production + fakes from jets and electrons)

$\gamma\gamma\to\gamma\gamma~{\rm couplings}$

œ

Direct coupling absent from the SM

 New couplings predicted by composite Higgs, extra dimensions, ...

No constraints from experiments

- Small couplings expected \rightarrow very high luminosity required \rightarrow high pile-up conditions ($\mu > 50$). (300 fb⁻¹ of data expected at the LHC at $\sqrt{s} = 14$ TeV)
- Huge background in the regular channel (SM $\gamma\gamma$ production + fakes from jets and electrons)
- Requirement of two intact protons with forward detectors

3 / 25

Almost all backgrounds are suppressed pile-up effects remain

Operators giving rise to $\gamma\gamma \rightarrow \gamma\gamma$ couplings

R.S. Gupta, Phys. Rev. D 85 (2012) 014006

$$L^{\gamma\gamma\gamma\gamma} = \frac{a_1^{\gamma\gamma}}{\Lambda^4} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \frac{a_2^{\gamma\gamma}}{\Lambda^4} F_{\mu\nu} F^{\nu\rho} F_{\rho\sigma} F^{\sigma\mu} \text{ with } \Lambda = 1 \text{ TeV}$$

Use of an arbitrary form factor at the amplitude level to regularize the new type of production

We use
$$f.f = \frac{1}{1 + (\frac{W_{\gamma\gamma}}{\Lambda_{cutoff}^2})^2}$$
 with $\Lambda_{cutoff} = 1$ TeV

(upper band of the cutoff imposed by unitarity)

■ Forward detectors mass acceptance (< 1.3 TeV) should exclude most of unitary violating events → relative low effect of the f.f. on the results (need to be checked)

Operators giving rise to $\gamma\gamma \rightarrow \gamma\gamma$ couplings

R.S. Gupta, Phys. Rev. D 85 (2012) 014006

$$L^{\gamma\gamma\gamma\gamma} = \frac{\alpha_1^{\gamma\gamma}}{\Lambda^4} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \frac{\alpha_2^{\gamma\gamma}}{\Lambda^4} F_{\mu\nu} F^{\nu\rho} F_{\rho\sigma} F^{\sigma\mu} \text{ with } \Lambda = 1 \text{ TeV}$$

Use of an arbitrary form factor at the amplitude level to regularize the new type of production

We use
$$f.f = \frac{1}{1 + (\frac{W_{\gamma\gamma}}{\Lambda_{cutoff}^2})^2}$$
 with $\Lambda_{cutoff} = 1$ TeV

(upper band of the cutoff imposed by unitarity)

■ Forward detectors mass acceptance (< 1.3 TeV) should exclude most of unitary violating events → relative low effect of the f.f. on the results (need to be checked)

• Only results on $\frac{a_1^{\gamma\gamma}}{\Lambda^4}$ are considered from here

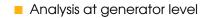
œ

Evaluate the LHC potential to probe $\gamma\gamma \rightarrow \gamma\gamma$ couplings using proton tagging

Evaluate the LHC potential to probe $\gamma\gamma \rightarrow \gamma\gamma$ couplings using proton tagging

■ $\gamma\gamma \rightarrow \gamma\gamma$ aQGC photon induced process implemented in **FPMC generator** in summer 2013

- Evaluate the LHC potential to probe $\gamma\gamma \rightarrow \gamma\gamma$ couplings using proton tagging
 - $\gamma\gamma \rightarrow \gamma\gamma$ aQGC photon induced process implemented in **FPMC generator** in summer 2013
 - Remaining backgrounds to estimate (very small)


- Evaluate the LHC potential to probe $\gamma\gamma \rightarrow \gamma\gamma$ couplings using proton tagging
 - $\gamma\gamma \rightarrow \gamma\gamma$ aQGC photon induced process implemented in **FPMC generator** in summer 2013
 - Remaining backgrounds to estimate (very small)
 - Pile-up backgrounds should dominate: 2 considered scenarios, $\mu = 50$ and 100

Analysis at generator level

œ

- Analysis at generator level
 - Estimation of **conversion rates** (η function), **fake photons** (coefficients), photon and photon fake **reconstruction efficiency** (p_T functions) from ECFA ATLAS studies

- Estimation of **conversion rates** (η function), **fake photons** (coefficients), photon and photon fake **reconstruction efficiency** (p_T functions) from ECFA ATLAS studies
- **Smearing** of 1% in γ energies, 0.001 in η and ϕ (absolute), 2% for ξ

- Analysis at generator level
 - Estimation of **conversion rates** (η function), **fake photons** (coefficients), photon and photon fake **reconstruction efficiency** (p_T functions) from ECFA ATLAS studies
 - **Smearing** of 1% in γ energies, 0.001 in η and ϕ (absolute), 2% for ξ
 - Requirement of at least one converted photon → constraint on the γ vertex to combine with proton timing measurement from forward detectors to reduce pile-up background

- Analysis at generator level
 - Estimation of **conversion rates** (η function), **fake photons** (coefficients), photon and photon fake **reconstruction efficiency** (p_T functions) from ECFA ATLAS studies
 - **Smearing** of 1% in γ energies, 0.001 in η and ϕ (absolute), 2% for ξ
 - Requirement of at least one converted photon → constraint on the γ vertex to combine with proton timing measurement from forward detectors to reduce pile-up background
 - Selection on high p^γ_T, high diphoton mass, ΔΦ, match proton missing/γγ mass, timing, ...

Inputs from the ECFA ATLAS studies (B. Lenzi)

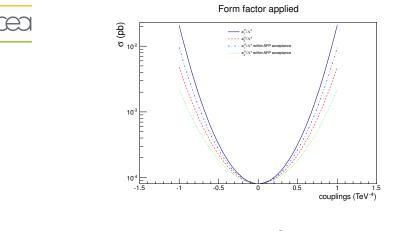
- Inputs from the ECFA ATLAS studies (B. Lenzi)
 - Photon conversion factors: 15% in the barrel, 30% in the end-caps

- Inputs from the ECFA ATLAS studies (B. Lenzi)
- Photon conversion factors: 15% in the barrel, 30% in the end-caps

Photon reconstruction efficiency factors: $Eff(p_T) = 0.76 - 1.98 \exp^{\frac{-p_T}{16.1(\text{GeV})}}$ $Eff_{\text{fake}}(p_T) = 0.0093 \exp^{\frac{-min(p_T, 200\text{GeV})}{17.5(\text{GeV})}} \rightarrow \text{almost no fake}$ γ from jets at very high p_T

- Inputs from the ECFA ATLAS studies (B. Lenzi)
- Photon conversion factors: 15% in the barrel, 30% in the end-caps

Photon reconstruction efficiency factors: $Eff(p_T) = 0.76 - 1.98 \exp^{\frac{-p_T}{16.1(GeV)}}$ $Eff_{fake}(p_T) = 0.0093 \exp^{\frac{-min(p_T, 200GeV)}{17.5(GeV)}} \rightarrow \text{almost no fake}$ γ from jets at very high p_T


 Photon fake factors: electrons 1% (European Strategy studies), use of fake photon efficiency for jets.

- Inputs from the ECFA ATLAS studies (B. Lenzi)
- Photon conversion factors: 15% in the barrel, 30% in the end-caps

Photon reconstruction efficiency factors: $Eff(p_T) = 0.76 - 1.98 \exp^{\frac{-p_T}{16.1(GeV)}}$ $Eff_{fake}(p_T) = 0.0093 \exp^{\frac{-min(p_T, 200GeV)}{17.5(GeV)}} \rightarrow \text{almost no fake}$ γ from jets at very high p_T

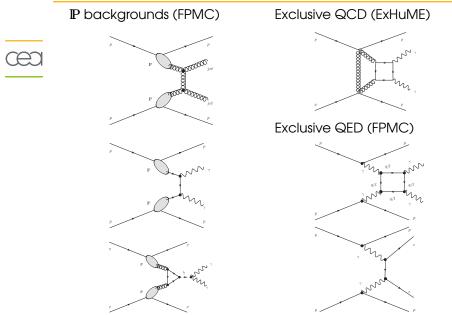
- Photon fake factors: electrons 1% (European Strategy studies), use of fake photon efficiency for jets.
- **Fake photon p_T for jets:** gaussian draw (Mean=75%, σ =13%) on the jet p_T

Integrated total cross-section against couplings

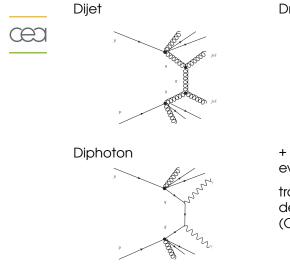
Assumption of $\int Ldt = 300 \text{ fb}^{-1} \rightarrow \text{sensitivy potentially}$ down to a few 0.1 TeV⁻⁴ = 10⁻¹³ GeV⁻⁴

Sensitivities to new physics (preliminary)

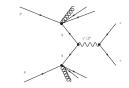
Sensitivy potentially down to a few $0.1 \text{ TeV}^{-4} = 10^{-13} \text{ GeV}^{-4}$


Sensitivities to new physics (preliminary)

CC	\mathbf{r}
	え

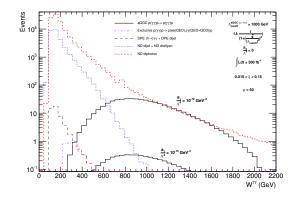

- Sensitivy potentially down to a few $0.1 \text{ TeV}^{-4} = 10^{-13} \text{ GeV}^{-4}$
- Corresponds to a KK graviton of 3.4 TeV in brane gauge field scenarios
- Current sensitivity at the LHC > 1 TeV (to be precised)
- For bulk gauge field scenarios and composite Higgs, sensitivities of 10⁻¹⁴,10⁻¹⁵ GeV⁻⁴ required

(S. Fichet and G.von Gersdorff, Anomalous gauge couplings from composite Higgs and warped extra dimensions, paper in preparation)


Considered backgrounds (FPMC+ExHuME)

Considered Backgrounds (HERWIG 6.5)

Drell-Yan

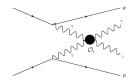


+ protons from minimum bias events (Pythia 8)

transported to the forward detectors with FPTracker (O. Kepka)

Mass distribution of signal and backgrounds

■ $0.015 < \xi < 0.15$, $|\eta| < 2.37$, $p_{T1,2} > 50 GeV$

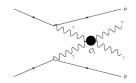


By requesting $W^{\gamma\gamma} > 600 \text{ GeV}$, Only pile-up backgrounds remain

Selection

Kinematic cuts

- $1 p_{T1} > 200 \ GeV, p_{T2} > 100 \ GeV$
- 2 W > 600 GeV


Selection

Kinematic cuts

- $|| p_{T1} > 200 \ GeV, p_{T2} > 100 \ GeV$
- 2 W > 600 GeV

Selection of exclusive events

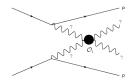
$$\frac{p_{T2}}{p_{T1}} > 0.95$$

Selection

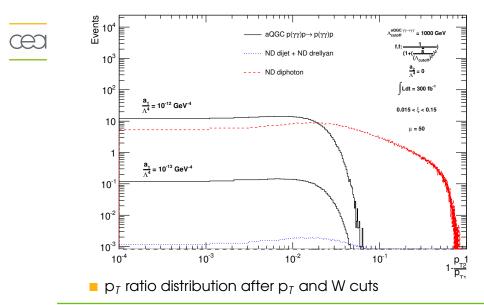
Kinematic cuts

- $10 \ p_{T1} > 200 \ GeV, p_{T2} > 100 \ GeV$
- 2 W > 600 GeV

Selection of exclusive events

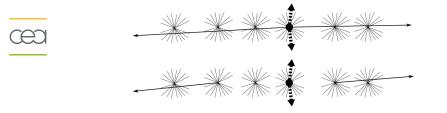

- $\frac{p_{12}}{p_{11}} > 0.95$
- 2 Π ΔΦ< 0.01
- Forward detectors cuts

 $1 \quad \sqrt{\xi_1 \xi_2 s} = W^{\gamma \gamma} \pm 3\%$

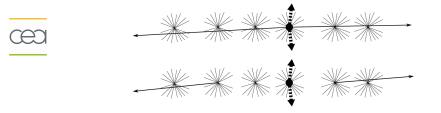

 Proton timing measurement with forward detectors

3
$$|\eta^{\gamma\gamma} - \eta^{pp}| < 0.03$$

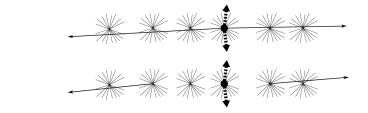
(0.5 * $ln(\frac{E_1 + E_2 + p_{z1} + p_{z2}}{E_1 + E_2 - p_{z1} - p_{z2}})$)



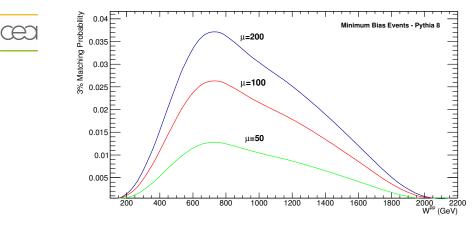
Exclusive signal: p₇ ratio



Forward detectors measurement


 Proton missing mass measurement within 3% in case of double tag

Forward detectors measurement


- Proton missing mass measurement within 3% in case of double tag
- It has to match the central mass for signal. Can match as well for pile-up backgrounds as statisical fluctuations

Forward detectors measurement

- Proton missing mass measurement within 3% in case of double tag
- It has to match the central mass for signal. Can match as well for pile-up backgrounds as statisical fluctuations
- Double tag probability from pile-up protons on forward detectors (no mass requirement) :
 0.32 (μ = 50)
 0.66 (μ = 100)
 0.93 (μ = 200)

15 / 25

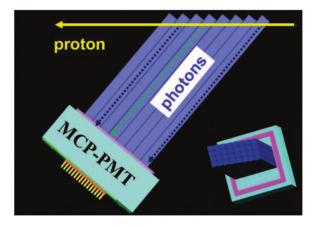
Probability for forward protons to match a given mass within 3% for different pile-up

Proton timing will be measured by forward detectors

- Proton timing will be measured by forward detectors
 - 10 ps resolution assumed \rightarrow proton vertex constrained within 3 milimeters

- Proton timing will be measured by forward detectors
 - 10 ps resolution assumed \rightarrow proton vertex constrained within 3 milimeters
 - Requirement of 1 converted $\gamma \rightarrow$ sub-mm resolution

- Proton timing will be measured by forward detectors
 - 10 ps resolution assumed \rightarrow proton vertex constrained within 3 milimeters
 - Requirement of 1 converted $\gamma \rightarrow$ sub-mm resolution
 - Resolution driven by forward timing detectors

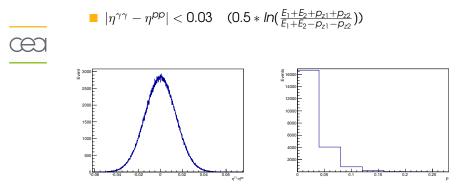

- Proton timing will be measured by forward detectors
 - 10 ps resolution assumed \rightarrow proton vertex constrained within 3 milimeters
 - Requirement of 1 converted $\gamma \rightarrow$ sub-mm resolution
 - Resolution driven by forward timing detectors

Gaussians beams of 45 mm are assumed

- Proton timing will be measured by forward detectors
 - \blacksquare 10 ps resolution assumed \rightarrow proton vertex constrained within 3 milimeters
 - Requirement of 1 converted $\gamma \rightarrow$ sub-mm resolution
 - Resolution driven by forward timing detectors
- Gaussians beams of 45 mm are assumed
 - Background due to pile-up divided by 40 at $\mu = 50$

- Proton timing will be measured by forward detectors
 - \blacksquare 10 ps resolution assumed \rightarrow proton vertex constrained within 3 milimeters
 - Requirement of 1 converted $\gamma \rightarrow$ sub-mm resolution
 - Resolution driven by forward timing detectors
- Gaussians beams of 45 mm are assumed
 - Background due to pile-up divided by 40 at $\mu = 50$
 - Inefficiency of the timing detector probably negligible at high ξ at $\mu = 50$ (< 5%)

- Proton timing will be measured by forward detectors
 - 10 ps resolution assumed \rightarrow proton vertex constrained within 3 milimeters
 - Requirement of 1 converted $\gamma \rightarrow$ sub-mm resolution
 - Resolution driven by forward timing detectors
- Gaussians beams of 45 mm are assumed
 - Background due to pile-up divided by 40 at $\mu = 50$
 - Inefficiency of the timing detector probably negligible at high ξ at $\mu = 50$ (< 5%)
 - Pixels may be required for μ > 100 M. Saimpert. Search for new states of matter wih the ATLAS experiment at the LHC, Master Thesis MINES ParisTech (2013)



[Inefficiencies - 2mm bar detector										
-[Bar	1	2	3	4	5	6	7	8	9	10
ſ	$\mu = 50$	0.129	0.085	0.067	0.057	0.049	0.046	0.043	0.040	0.036	0.011
- [$\mu = 100$	0.185	0.122	0.097	0.082	0.071	0.066	0.062	0.057	0.051	0.016
Ī	$\mu = 300$	0.226	0.149	0.118	0.100	0.087	0.081	0.077	0.071	0.063	0.020

œ

Search for anomalous $\gamma\gamma \rightarrow \gamma\gamma$ couplings at the LHC and test of the electroweak theory

Rapidity cut potential (preliminary)

Rapidity variable for signal (left)

Probability to get this variable within the good range for ND diphotons + pile-up protons which pass the rest of the selection

Signal Events - Preliminary Summary

(e)

 $\int L = 300 f b^{-1}$, $\sqrt{s} = 14 T eV$, at least one converted γ

cut/ a_1/Λ^4 coupling with f.f. (GeV ⁻⁴)	10-12	5.10 ⁻¹³	4.10-13	3.10-13	2.10-13	10^{-13}
$\begin{array}{c} \rho_{71,2}^{\gamma} > 50 \; GeV, \eta < 2.37, \\ 0.015 < \xi < 0.15 \end{array}$	519.3	129.8	83.1	46.7	20.8	5.2
$p_{T,1}^{\gamma}$ 200 GeV, $p_{T,2}^{\gamma}$ > 100 GeV	438.9	109.7	70.2	39.5	17.6	4.4
$W^{\gamma\gamma} > 600 GeV$	415.8	103.9	66.5	37.4	16.6	4.2
$p_{I,2}^{\gamma}/p_{I,1}^{\gamma} > 0.95$	415.7	103.9	66.5	37.4	16.2	4.2
$\Pi - \Delta \Phi < 0.01$ (no p _T ratio cut)	415.8	103.9	66.5	37.4	16.6	4.2
$\Pi - \Delta \Phi < 0.01$ (with p ₇ ratio cut)	415.7	103.9	66.5	37.4	16.6	4.2
$W^{pp} = W^{\gamma\gamma} \pm 3\%$	391.7	98.0	62.7	35.2	15.7	3.9
Vertex requirement	391.7	98.0	62.7	35.2	15.7	3.9
$ \Delta \eta^{\mathcal{D}\mathcal{D}} - \Delta \eta^{\gamma\gamma} < 0.03$	378.3	94.6	60.5	34.0	15.1	3.8

Table : Signal

DPE and Exclusive Background Events -Preliminary Summary

œ

 $\int L = 300 f b^{-1}, \sqrt{s} = 14 T eV$, at least one converted γ

cut/process	DPE	DPE	DPE di-	QED	QED	QCD
	$\gamma\gamma$	Higgs	jet	Excl.	Excl.	Excl.
				$\gamma\gamma$	ee	$\gamma\gamma$
$p_{T1,2}^{\gamma} > 50 \text{ GeV}, \eta < 2.37, \\ 0.015 < \xi < 0.15$	39.8	6e-02	8.3	7e-01	2e-02	3.0
$p_{I,1}^{\gamma} > 200 GeV. p_{I,2}^{\gamma} > 100 GeV$	2e-01	0.	4e-06	3e-02	3e-03	2e-01
$W^{\gamma\gamma} > 600 GeV$	3e-02	0.	3e-07	2e-02	2e-03	6e-02
$p_{T,2}^{\gamma}/p_{T,1}^{\gamma} > 0.95$	1e-02	0.	2e-08	2e-02	2e-03	6e-02
$\Pi - \Delta \Phi < 0.01$ (no p ₁ ratio cut)	4e-03	0.	2e-08	2e-02	2e-03	6e-02
$\Pi - \Delta \Phi < 0.01$ (with p _T ratio cut)	3e-03	0.	4e-09	2e-02	2e-03	6e-02
$W^{pp} = W^{\gamma\gamma} \pm 3\%$	0.	0.	0.	2e-02	1e-03	5e-02
Vertex requirement	0.	0.	0.	2e-02	1e-03	5e-02
$ \Delta \eta^{pp} - \Delta \eta^{\gamma\gamma} < 0.03$	0.	0.	0.	2e-02	1e-03	5e-02

Table : DPE and Exclusive Background

Pile-up Background Events ($\mu = 50$) - Preliminary Summary

 $\int L = 300 f b^{-1}, \sqrt{s} = 14 T e V$, at least one converted γ

cut/process	ND dijet	ND DY ee	ND $\gamma\gamma$
$p_{T1,2}^{\gamma} > 50 \text{ GeV}, \eta < 2.37, \ 0.015 < \xi < 0.15$	3e+04	84.2	1.03e+05
p _{1,1} > 200 GeV,p _{1,2} > 100 GeV	1.6e-01	1.46	2968.2
$W^{\dot{\gamma}\gamma} > 600 GeV$	3.6e-02	2e-01	1022.7
$p_{T,2}/p_{T,1} > 0.95$	1.2e-03	8.7e-02	413.5
$\Pi - \Delta \Phi < 0.01$ (no p ₇ ratio cut)	1.3e-03	2.5e-02	115.2
$\Pi - \Delta \Phi < 0.01$ (with p _T ratio cut)	1.3e-04	1.8e-02	80.2
$W^{pp} = W^{\gamma\gamma} \pm 3\%$	4.4e-06	6.4e-04	2.8
Vertex requirement	1.1e-07	1.6e-05	7.0e-02
$ \Delta \eta^{pp} - \Delta \eta^{\gamma\gamma} < 0.03$	2.5e-09	2.9e-07	1.1e-03

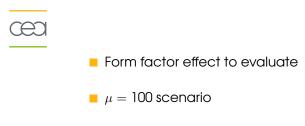
Table : Pile-up Background

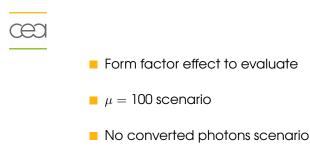
Conclusions

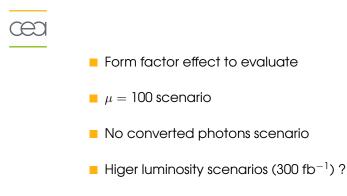
Conclusions

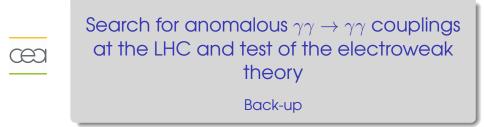
- Forward proton tagging at the LHC seems promising to probe **aQGC**
 - WW $\gamma\gamma$ and ZZ $\gamma\gamma$ couplings already studied with positive outputs (constrains improved by a factor > 100)

E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010)


Conclusions




- Forward proton tagging at the LHC seems promising to probe **aQGC**
 - $WW_{\gamma\gamma}$ and $ZZ_{\gamma\gamma}$ couplings already studied with positive outputs (constrains improved by a factor > 100)


E. Chapon, C. Royon, O. Kepka, Phys. Rev. D **81** (2010)

- A first look at the $\gamma\gamma \rightarrow \gamma\gamma$ couplings shows that we will be able to probe them down to a few 10^{-13} GeV $^{-4}$
- Waiting for final outputs from theorists (Discussions with S. Fichet and G.von Gersdorff)

Matthias Saimpert O. Kepka, B. Lenzi, C. Royon

CEA Saclay - Irfu/SPP

20/11/2013