Soft Physics with a Proton Tag, Report plans LPCC Forward Physics, Kracow

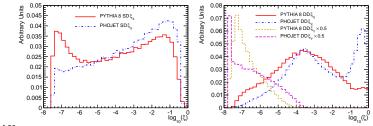
Tim Martin

University of Warwick

November 18, 2013

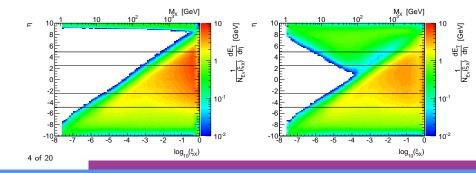
Introduction

Utilise kinematics of diffractive event topologies.

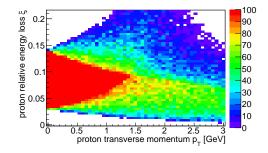

Look at what soft physics can also be tagged in the forward detectors: AFP210.

Work towards generator studies for the report.

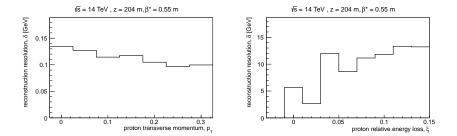
Today: Plans and first look at some studies.


Diffractive Kinematics: Pomeron Flux

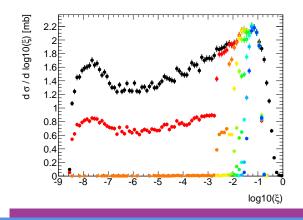
- Parameterised by ξ parameter. $\xi = M_X^2/s$ where M_X is the invariant mass of the larger diffractive system (c.f. M_Y).
- For a diffractivly scattered proton, ξ is equivalent to the fractional energy loss of the proton.
- Flux is \approx flat in log(ξ) due to $1/M_X^2$ dependence on cross section from Regge theory.
- Many different flux models in different generators.


Diffractive Kinematics: Generator Energy Flow

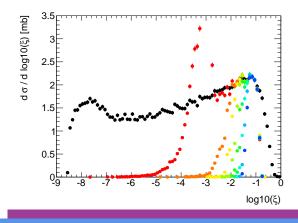
- Kinematics of diffractive dissociation results in asymmetric particle production in the (M_X, p) or (M_X, M_Y) systems.
- Aim to use proton tagging to enhance the diffractive selection, probe the particle correlations and dynamics of the diffractive systems.


AFP Acceptance

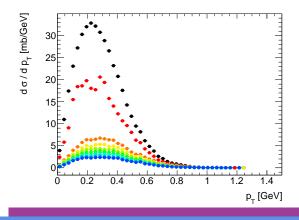
- Apply proton tagging to standard MinBias measurements.
- Use acceptance maps kindly provided by M. Trzebinski.
 - ATLAS Forward Physics detector at 210 m from IP.
 - Collision optics, $\beta^* = 0.55$ m.
 - $\sqrt{s} = 14$ TeV.
 - Distance from beam 0–4 mm ($\approx 20\sigma$).


AFP Reconstruction

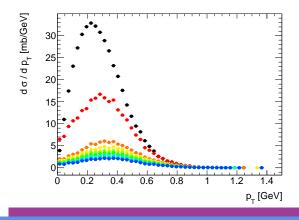
- Mainly driven by detector resolution, little dependence on \sqrt{s} .
- *p*_T resolution typically 0.1 GeV.
- ξ resolution 5 10 GeV for $\xi = 0.04 0.14$.


ξ Acceptance - Truth

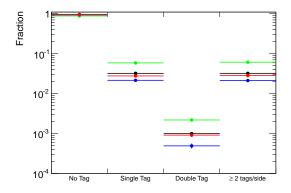
- Pythia 8 4C Single Diffractive at \sqrt{s} 14 TeV.
- Black, generated. Red, 0mm from beam Blue, 4mm from beam.
- True diffractive proton ξ .


ξ Acceptance - Resolution Smeared

- Pythia 8 4C Single Diffractive at \sqrt{s} 14 TeV.
- Black, generated. Red, 0mm from beam Blue, 4mm from beam.
- Diffractive proton ξ smeared by AFP resolution.


$p_{\rm T}$ Acceptance - Truth

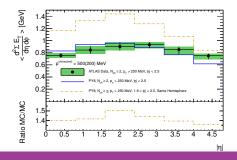
- Pythia 8 4C Single Diffractive at \sqrt{s} 14 TeV.
- Black, generated. Red, 0mm from beam Blue, 4mm from beam.
- True diffractive proton p_T.


$p_{\rm T}$ Acceptance - Resolution Smeared

- Pythia 8 4C Single Diffractive at \sqrt{s} 14 TeV.
- Black, generated. Red, 0mm from beam Blue, 4mm from beam.
- Diffractive proton p_T smeared by AFP resolution.

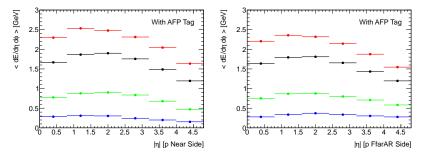
Protons reaching AFP

- Diffractive protons are not the only p reaching the forward detectors. Black=Inelastic, Green=SD, Blue=DD, Red=ND.
 - Forward shower particles, forward proton remnants
 - More detials in previous talk, R. Staszewski.

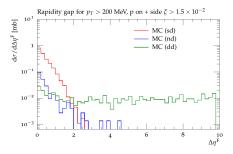

11 of 20

Plans for report

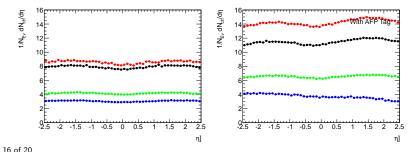
- Revisit some past ATLAS studies with early data.
- Use AFP acceptance maps for trigger and (optional) reconstructed ξ to enhance diffractive contribution to MinBias studies.
 - $\circ\,$ Charged particle multiplicities. Extra diffractive enhancement at low $N_{\rm ch}?$
 - Diffractive gap spectra. Distinguishing power between SD and DD?
 - Energy Flow. Asymmetric flow with reference to proton tag?
 - $\circ\,$ Identified particle spectra. Different Λ and ${\it K}_{s}$ spectra in tagged events?


Forward Energy

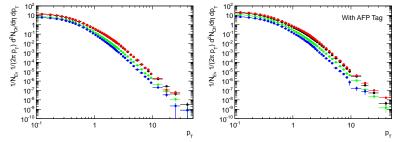
- We have discussed previously how a common definition could allow us to historic and future energy flow measurements.
 - Treat each hemisphere separately, 1/event for LHCb, 2/event for others.
 - Require N_{ch} \geq 2, p_T \geq 200 MeV within $\pm 1.9 < \eta < \pm 2.5$.
 - Correct to E flow of charged(neutral) particles with p > 500(200) MeV.


First Look - EFlow with a proton tag

- Require exactly 1 ASide proton, 0 CSide protons (AFP210, $\beta^* = 0.55m$, d=3mm, $\sqrt{s} = 14$ TeV).
- Shape comp: Black=Inelastic, Green=SD, Blue=DD, Red=ND.
- Split into hemispheres **near**est and **far**thest from *p*-tag.
- No significant shape change observed yet more study needed.

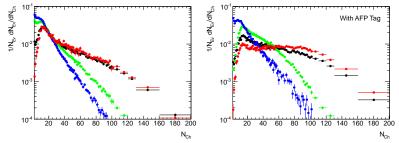

Diffraction with a gap

- As observed in studies by O. Kepka, shape differential between SD and DD.
- SD falls away as expected due to large diffractive mass needed for proton-tag ($M_X > 1.7$ TeV).
- Interesting behaviour of forward dissociated systems in DD, looks to give uniform trigger - independent of mass. More investigation...

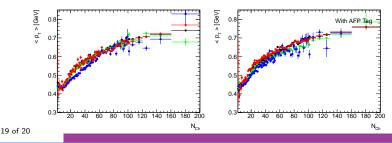

First Look - Charged Particle Multiplicities: η

- Tag exactly 1 ASide proton, 0 CSide protons (AFP210, $\beta^* = 0.55m$, d=3mm, $\sqrt{s} = 14$ TeV).
- Shape comp: Black=Inelastic, Green=SD, Blue=DD, Red=ND.
- Look at standard analysis ($N_{\rm ch} \ge 2, |\eta| < 2.5, p_{\rm T} > 100$ MeV) with/without tag.
- Interesting slope for DD, no obvious diffractive enhancement.

First Look - Charged Particle Multiplicities: p_{T}


- Tag exactly 1 ASide proton, 0 CSide protons (AFP210, $\beta^* = 0.55m$, d=3mm, $\sqrt{s} = 14$ TeV).
- Shape comp: Black=Inelastic, Green=SD, Blue=DD, Red=ND.
- Look at standard analysis ($N_{\rm ch} \ge 2, |\eta| < 2.5, p_{\rm T} > 100$ MeV) with/without tag.
- Little to see in p_Tspectrum.

17 of 20


First Look - Charged Particle Multiplicities: N_{ch}

- Tag exactly 1 ASide proton, 0 CSide protons (AFP210, $\beta^* = 0.55m$, d=3mm, $\sqrt{s} = 14$ TeV).
- Shape comp: Black=Inelastic, Green=SD, Blue=DD, Red=ND.
- Look at standard analysis ($N_{\rm ch} \ge 2, |\eta| < 2.5, p_{\rm T} > 100$ MeV) with/without tag.
- Nice additional enhancement visible at low N_{ch}.

First Look - Charged Particle Multiplicities: N_{ch} vs. $< p_{T} >$

- Tag exactly 1 ASide proton, 0 CSide protons (AFP210, $\beta^* = 0.55m$, d=3mm, $\sqrt{s} = 14$ TeV).
- Shape comp: Black=Inelastic, Green=SD, Blue=DD, Red=ND.
- Look at standard analysis ($N_{\rm ch} \ge 2, |\eta| < 2.5, p_{\rm T} > 100$ MeV) with/without tag.
- May also hold interesting sensitivity at low N_{ch}.

Conclusion

- Proton tagging should yield regions of phase space with enhanced diffractive contributions.
- Need to study the origin of protons which will reach AFP.
- Investigate sensitivity as a function of the distance of the detector from the beam.
- Investigate gains to be made in standard MinBias analyses at $\sqrt{s}\approx 14$ TeV.