Mueller-Navelet jets at the LHC with optimal renormalization

Bertrand Ducloué

Laboratoire de Physique Théorique d'Orsay

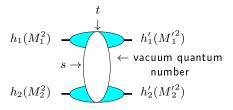
Cracow, 19 November 2013

in collaboration with L. Szymanowski (NCBJ Warsaw), S. Wallon (UPMC & LPT Orsay)

B. D, L. Szymanowski, S. Wallon, JHEP 1305 (2013) 096 [arXiv:1302.7012 [hep-ph]]
 B. D, L. Szymanowski, S. Wallon, arXiv:1309.3229 [hep-ph]

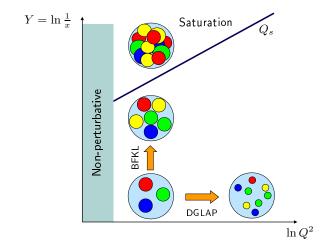
Motivations

- One of the important longstanding theoretical questions raised by QCD is its behaviour in the perturbative Regge limit $s \gg -t$
- Based on theoretical grounds, one should identify and test suitable observables in order to test this peculiar dynamics

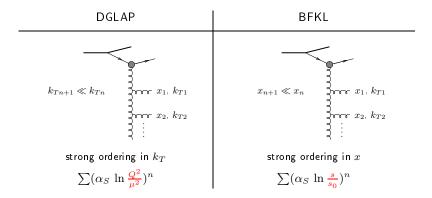


hard scales: $M_1^2, M_2^2 \gg \Lambda_{QCD}^2$ or $M_1'^2, M_2'^2 \gg \Lambda_{QCD}^2$ or $t \gg \Lambda_{QCD}^2$ where the *t*-channel exchanged state is the so-called hard Pomeron

The different regimes of QCD



Small values of α_S (perturbation theory applies due to hard scales) can be compensated by large logarithmic enhancements. \Rightarrow resummation of $\sum_{n} (\alpha_S \ln A)^n$ series



When \sqrt{s} becomes very large, it is expected that a BFKL description is needed to get accurate predictions

What kind of observables?

- perturbation theory should be applicable: selecting external or internal probes with transverse sizes $\ll 1/\Lambda_{QCD}$ or by choosing large t in order to provide the hard scale
- governed by the *soft* perturbative dynamics of QCD

and n

ot by its collinear dynamics
$$m = 0$$

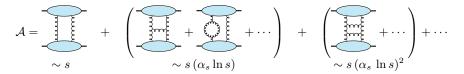
 $\psi = 0$
 $m = 0$

 \Rightarrow select semi-hard processes with $s\gg p_{T\,i}^2\gg \Lambda_{QCD}^2$ where $p_{T\,i}^2$ are typical transverse scale, all of the same order

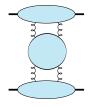
The specific case of QCD at large s

QCD in the perturbative Regge limit

The amplitude can be written as:



this can be put in the following form :



- $\leftarrow \mathsf{Impact} \ \mathsf{factor}$
- \leftarrow Green's function

 $\leftarrow \mathsf{Impact} \ \mathsf{factor}$

Higher order corrections

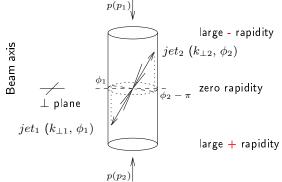
- Higher order corrections to BFKL kernel are known at NLL order (Lipatov Fadin; Camici, Ciafaloni), now for arbitrary impact parameter $\alpha_S \sum_n (\alpha_S \ln s)^n$ resummation
- impact factors are known in some cases at NLL

• $\gamma^* \to \gamma^*$ at t = 0 (Bartels, Colferai, Gieseke, Kyrieleis, Qiao; Balitski, Chirilli)

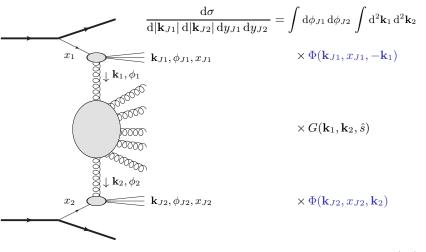
- forward jet production (Bartels, Colferai, Vacca; Caporale, Ivanov, Murdaca, Papa, Perri; Chachamis, Hentschinski, Madrigal, Sabio Vera)
- inclusive production of a pair of hadrons separated by a large interval of rapidity (lvanov, Papa)
- $\gamma_L^*
 ightarrow
 ho_L$ in the forward limit (Ivanov, Kotsky, Papa)

Mueller-Navelet jets

- Consider two jets (hadrons flying within a narrow cone) separated by a large rapidity, i.e. each of them almost fly in the direction of the hadron "close" to it, and with very similar transverse momenta
- in a pure LO collinear treatment, these two jets should be emitted back to back at leading order: $\Delta \phi \pi = 0$ ($\Delta \phi = \phi_1 \phi_2 =$ relative azimuthal angle) and $k_{\perp 1} = k_{\perp 2}$. There is no phase space for (untagged) emission between them



k_T -factorized differential cross section



with $\Phi(\mathbf{k}_{J2}, x_{J2}, \mathbf{k}_2) = \int dx_2 f(x_2) V(\mathbf{k}_2, x_2)$ $f \equiv \mathsf{PDF}$ $x_J = \frac{|\mathbf{k}_J|}{\sqrt{s}} e^{y_J}$

Results for a symmetric configuration

In the following we show results for

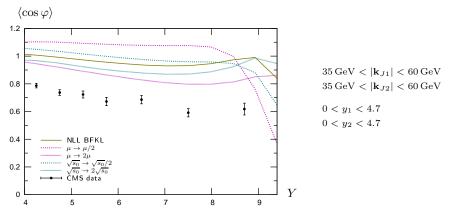
•
$$\sqrt{s} = 7$$
 TeV

- $35 \,\mathrm{GeV} < |\mathbf{k}_{J1}|, |\mathbf{k}_{J2}| < 60 \,\mathrm{GeV}$
- $0 < y_1, y_2 < 4.7$

These cuts allow us to compare our predictions with the first experimental data from the LHC presented by the CMS collaboration (CMS-PAS-FSQ-12-002)

note: unlike experiments we have to set an upper cut on $|{\bf k}_{J1}|$ and $|{\bf k}_{J2}|$. We have checked that our results don't depend on this cut significantly.

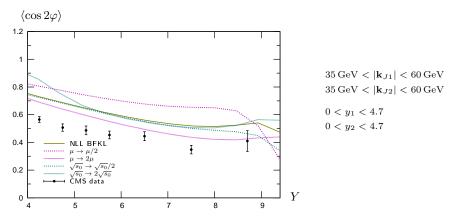
Azimuthal correlation $\langle \cos \varphi angle$



- NLL BFKL predicts a too small decorrelation
- The NLL BFKL calculation is still rather dependent on the scales, especially the renormalization / factorization scale

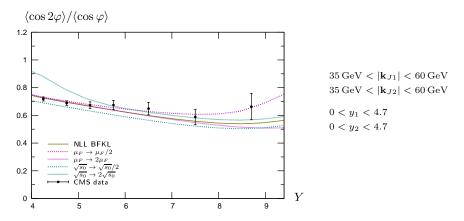
Results: azimuthal correlations

Azimuthal correlation $\langle \cos 2\varphi \rangle$



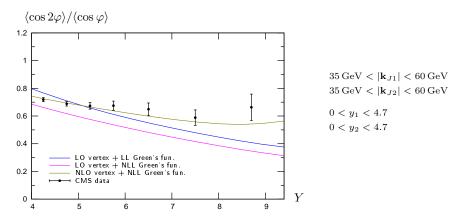
- $\bullet\,$ The agreement with data is a little better for $\langle\cos 2\varphi\rangle$ but still not very good
- This observable is also very sensitive to the scales

Azimuthal correlation $\langle \cos 2\varphi \rangle / \langle \cos \varphi \rangle$



- This observable is more stable with respect to the scales than the previous ones
- The agreement with data is good across the full Y range

Azimuthal correlation $\langle \cos 2 \varphi \rangle / \langle \cos \varphi \rangle$



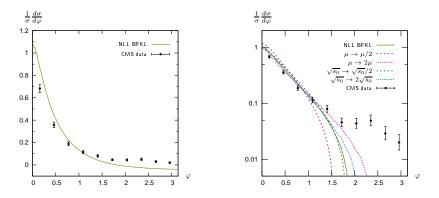
It is necessary to include the NLO corrections to the jet vertex to reproduce the behavior of the data at large ${\cal Y}$

Azimuthal distribution

The azimuthal distribution $\frac{1}{\sigma}\frac{d\sigma}{d\varphi}$ has also been measured by the CMS collaboration. It can be written as

$$\frac{1}{\sigma}\frac{d\sigma}{d\varphi} = \frac{1}{2\pi} \left\{ 1 + 2\sum_{n=1}^{\infty} \cos\left(n\varphi\right) \left\langle \cos\left(n\varphi\right) \right\rangle \right\}$$

Azimuthal distribution: comparison to CMS data



• Our calculation predicts a too large value of $\frac{1}{\sigma}\frac{d\sigma}{d\varphi}$ for $\varphi\lesssim\frac{\pi}{2}$ and a too small value for $\varphi\gtrsim\frac{\pi}{2}$

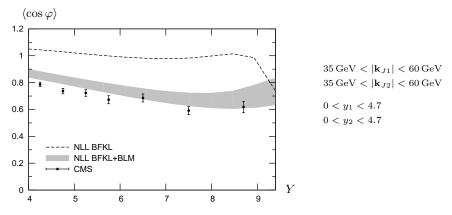
• For large values of φ , the distribution even becomes negative

Results

- The agreement of our calculation with the data for $\langle \cos 2\varphi \rangle / \langle \cos \varphi \rangle$ is good and very stable with respect to the scales
- The agreement for $\langle \cos n\varphi \rangle$ and $\frac{1}{\sigma} \frac{d\sigma}{d\varphi}$ is not very good and very sensitive to the choice of the renormalization scale μ_R
- An all-order calculation would be independent of the choice of μ_R . This feature is lost if we truncate the perturbative series
 - ⇒ How to choose the renormalization scale? 'Natural scale': sometimes the typical momenta in a loop diagram are different from the natural scale of the process

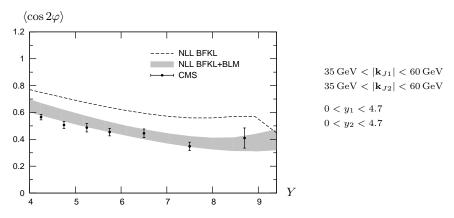
The Brodsky-Lepage-Mackenzie (BLM) procedure resums the self-energy corrections to the gluon propagator at one loop into the running coupling. These contributions are formally of higher-order but they are proportional to $\beta_0 = \frac{11N_c - 2N_f}{3} \simeq 7.67$

Azimuthal correlation $\langle \cos \varphi \rangle$



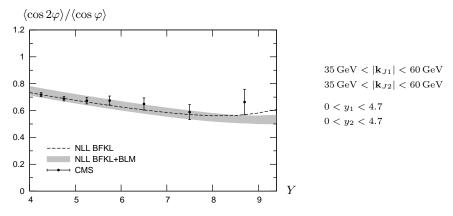
Using the BLM scale setting, the scale uncertainty is reduced and the agreement with data becomes much better

Azimuthal correlation $\langle \cos 2\varphi \rangle$



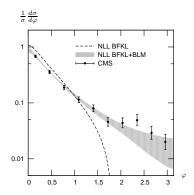
Using the BLM scale setting, the scale uncertainty is reduced and the agreement with data becomes much better

Azimuthal correlation $\langle \cos 2 \varphi \rangle / \langle \cos \varphi \rangle$



Because it is much less dependent on the scales, the observable $\langle \cos 2\varphi \rangle / \langle \cos \varphi \rangle$ is almost not affected by the BLM procedure and is still in very good agreement with the data

Azimuthal distribution: comparison to CMS data



With the BLM scale setting the azimuthal distribution no longer reaches negative values and is in good agreement with the data across the full φ range.

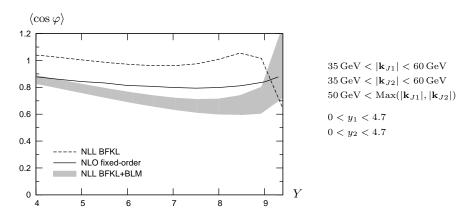
Using the BLM scale setting:

- $\bullet\,$ The agreement $\langle \cos n \varphi \rangle$ with the data becomes much better
- The agreement for $\langle \cos 2\varphi \rangle / \langle \cos \varphi \rangle$ is still very good and unchanged as this observable is weakly dependent on μ_R
- The azimuthal distribution no longer reaches negative values and is in much better agreement with the data

But the configuration chosen by CMS with $\mathbf{k}_{J\min1} = \mathbf{k}_{J\min2}$ does not allow to compare with a fixed-order treatment (i.e. without resummation) We compare our results with the NLO fixed-order code Dijet (Aurenche, Basu, Fontannaz) in an asymmetric configuration

- $35 \,\mathrm{GeV} < |\mathbf{k}_{J1}|, |\mathbf{k}_{J2}| < 60 \,\mathrm{GeV}$
- $50 \,\mathrm{GeV} < \mathrm{Max}(|\mathbf{k}_{J1}|, |\mathbf{k}_{J2}|)$
- $0 < y_1, y_2 < 4.7$

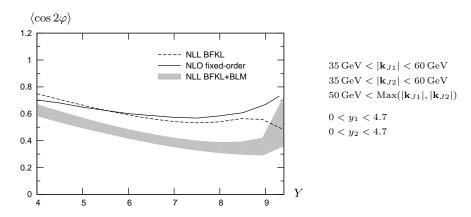
Azimuthal correlation $\langle \cos \varphi angle$



- As in the symmetric case, the BLM procedure strongly modifies the result of our BFKL calculation
- The NLO fixed-order and NLL BFKL+BLM calculations are very close

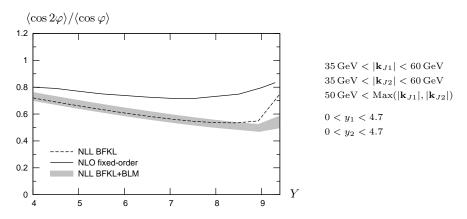
Comparison with fixed-order

Azimuthal correlation $\langle \cos 2 \varphi \rangle$



- As in the symmetric case, the BLM procedure strongly modifies the result of our BFKL calculation
- The BLM procedure leads to a larger difference between NLO fixed-order and NLL BFKL+BLM

Azimuthal correlation $\langle \cos 2 \varphi \rangle / \langle \cos \varphi \rangle$



Using BLM or not, we see a sizable difference between BFKL and fixed-order \Rightarrow An experimental analysis with enough statistics should provide clear discrimination between these two treatments

Conclusions

- We studied Mueller-Navelet jets at full (vertex + Green's function) NLL accuracy and compared our results with the first data from the LHC
- The observables $\langle \cos n\varphi \rangle$ and $\frac{1}{\sigma} \frac{d\sigma}{d\varphi}$ are very dependent on the choice of the scales and don't agree very well with data
- The agreement with CMS data is greatly improved by using the BLM scale fixing procedure
- For the observable $\langle \cos 2\varphi \rangle / \langle \cos \varphi \rangle$:
 - NLL BFKL predictions are much more stable with respect to the scales
 - the data is well described by BFKL in a symmetric configuration
 - there is a clear difference between NLO fixed-order and our NLL BFKL calculation in an asymmetric configuration

 \Rightarrow In our opinion this is a strong motivation for an experimental analysis in an asymmetric configuration