

Summary of completed/on going analysis performed at 7,8 TeV and Plans for LHC-II

V. Avati (CERN)

Definition of Run Scenario

- 1) High beta, low luminosity $\beta^*=90m$, $N_{bunch} \le 100$, reduced bunch intensity, $\mu \sim \text{few \%}$, $\mathscr{L} \sim 10^{28} - 10^{30} \text{ Hz/cm}^2$ RP approach 5-10 σ
- 2) High beta, medium luminosity β^* =90m, N_{bunch} ~ 1000 , μ ~ 0.5 , \mathscr{L} ~ 10³¹ Hz/cm² RP approach 10-15 σ
- 3) Low beta $$\beta^*$=0.6m,\,N_{bunch}\sim2800$, $\mu\sim30\text{--}50,~~\mathcal{L}\sim~10^{33}-10^{34}~Hz/cm^2$ RP approach 15 σ

Total Cross Section : methods

$$\sigma_{tot}^2 = \frac{16\pi}{(1+\rho^2)} \frac{1}{\mathcal{L}} \left(\frac{dN_{el}}{dt}\right)_{t=0}$$

Based on Elastic scattering

 $\sigma_{tot} = \sigma_{el} + \sigma_{inel}$

 ρ independent

$$\sigma_{tot} = \frac{16\pi}{(1+\rho^2)} \frac{(dN_{el}/dt)_{t=0}}{(N_{el}+N_{inel})}$$

 $\mathscr L$ independent

Cross sections

REFs : EPL 95 (2011) 41001 EPL 96 (2011) 21002 EPL 101 (2013) 21002 EPL 101 (2013) 21003 EPL 101 (2013) 21004 PRL 111 (2013) 12001

What has been measured @7,8 TeV Elastic cross section: $t_{min} = 5 \cdot 10^{-3} \text{ GeV}^{-2}$ @ 5 σ $\beta^*=90m$ $t_{min} = 6 \cdot 10^{-4} \text{ GeV}^{-2}$ @ 3 σ $\beta^*=1000m$

Inelastic cross section (for diffractive masses down to 3.4 GeV)

Total cross section

Soft Single diffraction

REF: LHC students poster session 13 March 2013

What has been measured @7,8 TeV (in progress) σ_{sD} in different mass ranges, down to 3.4 GeV Proton t- distribution & slope in different mass ranges

Analysis including CMS detector in progress

Challenges:

- Background determination from data : from zero bias triggered events extract the incidence of beam halo protons in RP and associate it to the different topologies in T1, T2
- acceptance corrections due to correlations

Combining CMS&TOTEM:

- improve background determination for category I & II
- further segmentation of category II

High ξ region:

- Non detectable rapidity gap
- Mass based on $\boldsymbol{\xi}$
- proton background from optics characteristic

Soft Single diffraction

What has been measured @7,8 TeV (not yet final)

 $\sigma_{_{SD}}$ in different mass ranges, down to 3.4 GeV Proton t- distribution & slope in different mass ranges

Analysis including CMS detector in progress

Challenges:

TOTEM

- optics determination & $\boldsymbol{\xi}$ reconstruction
- Background determination from data : from zero bias triggered events extract the incidence of beam halo protons in RP and associate it to the different topologies in T1, T2
- acceptance corrections due to correlations

Combining CMS&TOTEM:

- improve background determination for category I & II
- further segmentation of category II

High ξ region:

- Non detectable rapidity gap
- Mass based on $\boldsymbol{\xi}$
- proton background from optics characteristic

Double diffraction

REF: CERN-PH-EP-2013-170 Submitted to PRL

What has been measured @7,8 TeV:

 $\sigma_{_{DD}}$ for diffractive system with 4.7<| $\eta_{_{min}}|$ <6.5

Not yet planned: totem + cms

Aim at full coverage measurement @13 TeV

Challenges:

- limited $\boldsymbol{\eta}$ coverage
- background determination:

ND background estimated scaling the MC prediction using a control sample from data dominated by ND (2T1+2T2 events)

SD background estimated completely from data using a SD-dominated control sample (0T1+1T2) with protons in the RP

Run Scenario @ 13 TeV:

In any optics condition - low pile-up (~0.05) is mandatory!

- Min Bias trigger (T2)

The detection of the proton can help in the determination of the Single diffractive background

Very forward dN_{CH}/dη measurement

What has been measured @7,8 TeV

 $dN_{_{\rm CH}}\!/d\eta$ for inelastic events with at least a charged particle in

- 5.3<|η|<6.5 (INELASTIC)
- 5.3<η<6.5 and -6.5<η<-5.3 (NSD enhanced)
- 5.3< η <6.5 and none in -6.5< η <-5.3 and viceversa (SD enhanced)

Not yet done: measure the spread of $dN_{CH}/d\eta$

Measure correlations forward-backward/forward-central

Challenges:

- primary/secondary separation especially in forward direction
- correlation forward , central
- pT cut in central tracking
- T2 occupancy

Run Scenario @ 13 TeV:

- any optics
- low pile-up (~0.05) is mandatory!
- Min Bias trigger (T2?)
- Zero Bias trigger to extend the topologies? [mind the statistics!]

Single Diffractive dijets

REF: CMS-TOTEM SD diffractive dijets FSQ-12-033

What has been measured @7,8 TeV (in progress):

Sample : $\beta^*=90m$, 112 bunches, $\mathscr{L} \sim 43nb^{-1}$, dijet trigger $p_T>20 \text{ GeV}$

Fraction of dijets (p_T >30 GeV) events with proton $0.03 < \xi < 0.1$; $0.03 < |t| < 1 \text{ GeV}^2$

t-distribution of the diffractive proton

Challenges:

- optics determination & ξ reconstruction
- acceptance corrections due to correlations (θ_x^* and ξ) CMS+TOTEM full simulation not yet available
- background (beam halo, pile-up): ~ 20-30% per arm
 Large part of background can be rejected using selection based on energy/momentum conservation

$$\xi_{\text{CMS}}$$
- ξ_{TOTEM} <0

Remaining contribution is estimated from ZeroBias data combined with MC prediction of signal

- gap survival probability estimation, comparison with Tevatron results and dPDFs predictions

Run Scenario @13 TeV:

- $\beta^*=90m$ low pile up / "low" luminosity statistics should not be an issue Possibility of low p_Tjet threshold

- any scenario with high pile-up and high luminosity make this measurement even more challenging

Central diffraction : TOTEM + CMS

-t [GeV2]

Central Diffraction : soft & hard

REFs :

- LHC Seminar- TOTEM Physics program, analysis and results- H. Niewiadomski
- CMS-DP-2013-004

What has been measured @7,8 TeV $\beta^*=90m$: 112 bunches, $\mathscr{L}_{int} \sim 43nb^{-1}$ Trigger on central jets (p_T>20 GeV) ~100 events

3 bunches, $\mathscr{L}_{int} \sim 0.8 \text{ nb}^{-1}$ RP double arm ~ 300k events

Lack of statistics!

More on going.....

- Single Diffractive J/ψ
 Few events only. Need larger statistics!
- > Central diffraction at very low ξ (see Ken' talk)
- Missing mass in central diffraction (see Ken' talk)
- Classification of soft processes

≻

Plans for the Yellow Report contribution

Describe briefly the results obtained during LHC-RUN-I

Estimate the performances at higher energies, as well as the most suitable running scenario