

Outer tracker SiPM,

A view on the thermal issues and cooling solutions

Workshop on SiPM cooling for Fiber Tracker Bart Verlaat, Paolo Petagna, Antonio Pellegrino

SiPM thermal issues

- -50°C cooling should not be the challenge, enough "commercial" options seem to be available.
- To my point of view the challenge is the overall thermal design.
 - No space for good insulation.
 - Thermal design is the driving design factor for the mechanics.
 - Sophisticated insulation methods or materials needed.

Cooling fluids.

- WRT cooling in inner detectors:
 - SiPM has a relative low heat load
 - SiPM has relative much space and no low mass requirement.
 - Tubes can be larger
 - Is radiation an issue?
 - Can we use more common refrigerants used in refrigeration?
- 2-phase or single phase?
 - Single phase has cold lines, is there space for insulation?
 - 2-phase can have warmer in or outlets and can be designed with less or no insulation

Enthalpy (kJ/kg)

- CO2 freezes at -56°C
- 2PACL cycle (LHCb/Atlas/CMS) needs sub cooled liquid.
 - Practical lower limit: -40°C
 - Oil free
 - Cold lines
- Compressor cycle can be an option
 - Lower temperature possible -50°C
 - Commercial available if oil is allowed
 - Oil free requires a not standard compressor
 - Warmer lines

Fluid comparison

		P @ -50 °C	Freezing point		
		(bar)	(°C)	Latent heat (J/g)	GWP
Commercial choice for low temperatures	C3F8	0.53	-147.7	110	8830
	C2F6	3.7	-100	112	12200
	CO2	6.8	-56.6	339	1
	N2O	6.5	-90.8	326	298
	R404a	0.84	<-105	203	3300
	→R508b	5.9	<-140	138	13400
	R125	0.92	-100.6	165	3500

 N_2O has most properties similar to CO_2 , except the freezing point... $N_2O=R744a=Laughing$ gas, $CO_2=R744$

Fluids with high pressures can also be pumped in a 2PACL (oil free, more stable)

A 2PACL system is very stable and easy to control. Operation with N2O should be okay as it is similar to CO2.

R744 vs R744a

Is a 2PACL with N2O an option? I have no idea about the impacts such as safety, radiation hardness etc. Thermally it looks interesting. N2O is used to foam cream, so it is not too bad I guess

Pressure (bar)

Other commercial cooling options

- R404a in a 2-stage compressor cycle
 Disadvantage: low pressure, oil.
- R508b + R404a in a cascade system. (Cascade R404a with CO₂ also possible)
 – Disadvantage: oil
- Liquid brine
 - Disadvantage: Dirty fluids.

Known CERN cooling solutions:

- C3F8
 - Too low pressure 0.5 bar @ -50° C.
- C2F6
 - Could be a good candidate, pressure reasonable.
 - 3.7 bar@-50°C
 - Compressor seem not standard.
 - Expensive fluid
- FC Blends
 - I don't see any reason for a blend, no pressure issue like in Atlas.
- FC liquid brines
 - Personally no experience, but seems like a known technology.
 - Cold lines

Flexible vacuum insulation (Atlas IBL)

- 16mm flexible vacuum below
- •4mm*0.5mm + 1.6x0.3mm concentric tube with CO₂
- •12m long
- •Flexible (like a cable)
- -40 °C inside, 18°C outside
- •Up to 300 watt cooling

