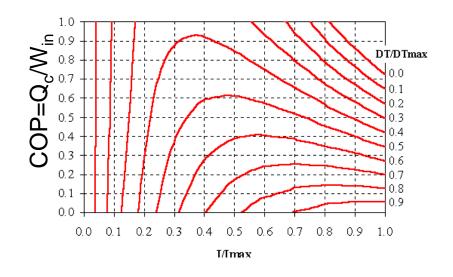

Hybrid options with TE coolers

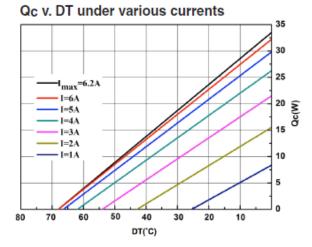
Petr GORBOUNOV (CERN PH-LBO / ITEP Moscow)

TE coolers (TEC): motivation

- Historically, one of the first proposed options for SiPM cooling (November 2012, then for T=-25°C)
- Widely used for compact cooling systems
- ΔT up to **100°C** for 2-stage modules
- Ideal modular solution with "warm-only" connections
- Precise local temperature control (0.1°C)
- No moving parts, environmentally safe
- Reliable (typical lifetime > 200 000 h)
- Reversible (cooling/heating)
- Resistant to ionizing radiation

Interest expressed by:

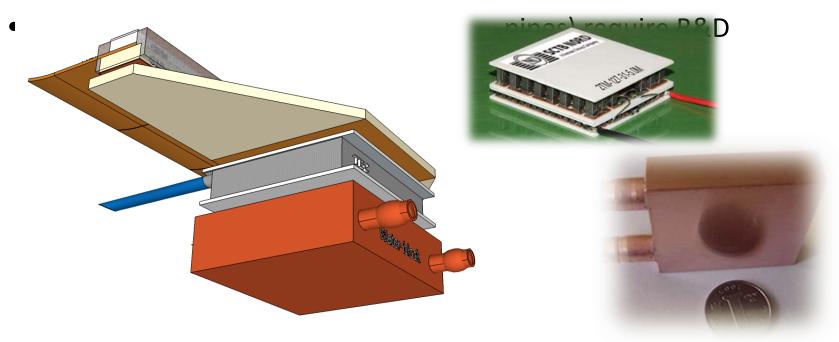

- Myself!
- Uni. of Heidelberg (B.Leverington + student)
- Inst. of Thermoelectricity (ITE, Chernovtsy/Ukraine)



(Image from http://www.tellurex.com/technology/peltier-faq.php)

TEC drawbacks

- Low efficiency at extreme △T, generate a lot of heat (from Watts, to tens of Watts), require DC of O(1-10A): applications are limited to small setups
- Very little is known about their resistance to neutron radiation (recently, TEC samples were irradiated at the Ljubljana reactor, to be examined at CERN soon)

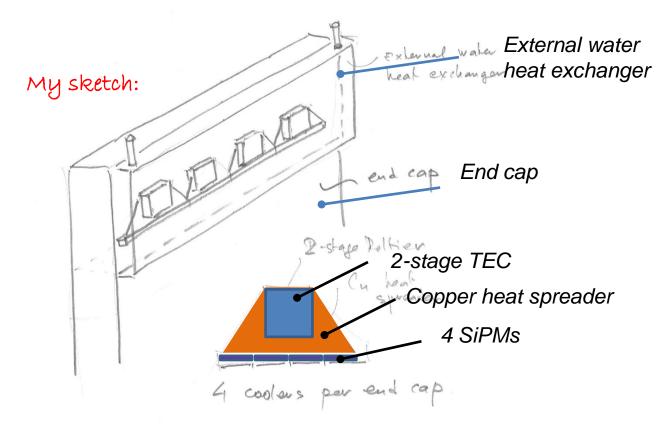


Typical 30x30 mm2 TEC (Tellurex C2-30-0806), At I=4A, Win ~ 20W

FT-specific aspects

- Require water cooling at extreme ΔT
- Can be expensive (linear floating power supplies, ~1200 ~30W channels ~300K Euros (CAEN))
- High currents (Amps): must be moved away from SiPMs (nano-Amps)

Follow-up


- Established contacts with leading TEC developers and manufacturers
- Visit to ITE (Chernovtsy/UA), to discuss ways to optimize the use of TECs with SiPMs
 - They favored hybrid solutions: a fully integrated version (1-stage Peltier in the SiPM package), or a custom-designed TEC with liquid precooling at -10...-20°C.
 Both options were rejected at CERN: prefer a simpler solution
- Contacts and visit to Thermacore (UK), to discuss another hybrid option with an external 2-stage TEC bridged to a low-temperature ammonia-filled heat pipe attached to the SiPM array inside the end cap. The heat pipe acts as a perfect heat spreader providing a uniform (within 1°C) temperature profile along the 53 cm-long detector array.
 - Thermacore presentation at CERN (24 July 2013)
 - Offer to design and manufacture prototype heat pipes; cost estimate for mass production (~1 kEuro/piece). Rejected at CERN: high cost, ammonia

Heat-pipe/TEC hybrid concept:

The latest concept

- Decision to return to the original proposal with an external TEC and copper heat spreader (one per 4 SiPMs = 1 fibre mat), using the existing end cap design concept as the basis
- ITEP design engineer currently working on the CAD drawings.

Summary

- TE cooling (or a hybrid TE/water) represents a potential solution, fully matching the requirements of modularity, "warm connections" and ability to cycle between cooling and warming.
- R&D is required to prove its viability
- At least one group (Uni. Heidelberg) expressed an interest (with no commitments yet). ITE (UA) is willing to design and produce the TECs.
- This solution can be expensive (unless cheaper multi-channel floating PSs can be found): 300+300(60+250)+100≈500 KCHF PSs TECs+HEX cabling