

SiPM Fiber Tracker Cooling System Solutions

Michele Battistin – Enrico Da Riva

CERN Engineering Department Cooling and Ventilation Group

Workshop on SiPM cooling for Fiber Tracker CERN, 17th October 2013

AGENDA

- Perfluorocarbon or not perfluorocarbon??
 - evaporative solution
 - mono-phase solution

Details on the pre-study for SiPM cooling

TOTEM Roman Pots C₃F₈ Evaporative Cooling System Eng Spec EDMS 778214 v1

POTS STATIONS LOCATION

DESIGN PARAMETERS

Coolant	C ₃ F ₈
Expected heat load per single Pot	25 W
Design individual dissipation	50 W
Total design cooling capacity	1200 W
Maximum ΔT between sensors and fluid	10 °C
Silicon sensor operation temperature	-15 °C
Fluid evaporation temperature	-30 °C
Total design mass flow	40 g/s

Roman Pot cooling Evaporative system @ C₃F₈

Lamination phase between points A and B

А

OPTION 1 - Capillary

lamination into a capillary located inside the Pot

- no need of insulation and heat + intake on the supply line, horizontal flexibility
- to be individually tested, time consuming, behaviour off design to be studied

OPTION 2 - Manual valve

lamination into a manually adjustable valve located outside the Pots, as near as possible

- commercial component, time and + cost effective, reliability, flexibility
- need of insulation to avoid condensation. heat intake from environment SiPM Cooling for Fiber Tracker

₽ B	c c	

Compressor design [data from HAUG, supplier of dry compressors succesfully tested for SR1 and Atlas evaporative machine]

Nominal flow rate	2 g/s per circuit 48 g/s total 20.3 Nm3/h
Option 1	
WTEGX 80/60 3 cylinders 2 stages	
0.8-10 bara @ 13 1.0-10 bara @ 18	Nm3/h Nm3/h
~30 kCHF	
Option 2	
VTOGX 120/60 2 cylinders 2 stages	AS.
<mark>0.8-10 bara @ 20</mark> 1.0-10 bara @ 30	Nm3/h Nm3/h
~50 kCHF	all C
90	

TOTEM RP cooling C₃F₈ main working points

TOTEM RP Cooling System Schematic

Could C₃F₈ or C₂F₆ Evaporative System Be the Solution for SiPM Fiber Tracker?

- The solution has already been used for TOTEM Roman Pots and ATLAS Blends
 - Low operation temperature easily achivable $(-43^{\circ} \text{ C} \text{ during Totem tests with } C_3F_8 \text{ lower with } C_2F_6)$;
 - Low opeartion pressure on the detector (0.8 1 bara);
 - Temperature stability and uniformity is granted by the evaporation pressure;
 - Tranfer lines operates at ambient temperature: can be very long (300 m for Totem). The cooling station can be in an accessible area (no operation in the protected zone);
- Known technology both on detector structure than on the cooling system
 - The system is running since 2007 with high reliability;
- Cost estimate (based on TOTEM and ATLAS-Blends cooling):
 - Cooling station 250 kCHF @ 2007 (EN-CV-DC mechanical and electr. construction);
 - Copper not insulated transfer lines 30-50 kCHF;
 - Manifolding ??
- Do we need to use C_3F_8 ? **NO**
 - No radiation -> other industrial refrigerants (more green) could be studied (R23; R125;...)

A mono-phase system ??

Could C₆F₁₄ Mono-phase System Be the Solution for SiPM Fiber Tracker?

- The solution has already been used for 13 cooling systems for LHC Exp. detectors
 - LHCb Inner Tracker, Trigget Traker, Rich1&2;
 - Low operation temperature easily achivable (-50° C or less) depending on chiller selection;
 - Low opeartion pressure on the detector (3-5 bar);
 - Temperature stability and uniformity is granted by a fast T regulation heater;
 - Tranfer lines shall be insulated (0.5 K temperature rise see: E. Da Riva);
- Known technology both on detector structure than on the cooling system
 - Refers to E. da Riva presentation this morning for the on-detector solution;
- Cost estimate (based on LHCb IT-TT-Rich cooling systems)
 - Cooling station: 140-180 kCHF @ 2013 (tendered);
 - Insulated transfer lines 80-100 kCHF;
 - Manifolding: about 1500 CHF/cooling loop (based on 48 loops of 6 modules see E. Da Riva presentation);
- Do we need to use C₆F₁₄? NO
 - No radiation -> other industrial (more green) fluids are available (NOVEC646 see: E. Da Riva).

Conclusions

- Perfluorocarbons have no advantages: alternative fluids can be used in the same process installation.
- Liquid mono-phase cooling appears more appealing for
 - cooling system simplicity (installation & maintenance cost)
 - cooling efficiency (operation cost)
- Two-phases allows warm small pipe distribution up to the protected "enclave" (integration issues)

Thanks for your attention

You can find as back-up the details of the C₆F₁₄ single-phase cooling system preliminary design done by Enrico Da Riva

"Order of magnitude estimate for open discussion"

> Very simple design, as compared to traditional two-phase systems, which would require 288 capillaries, automatic pressure regulation valve(s), (two-stage) compressor, lubricant-free compressor or dealing with oil return issues, higher system pressure ...;

> Only evident drawback: lines must be insulated, while two-phase system can have warm lines up to the capillaries and heater or water heat exchanger at the modules outlet;

> Temperature stability demanded to the chiller only, no other regulation needed (constant heat load);

 $> C_6F_{14}$ is not binding, "green" fluids such (e.g. its substitute NOVEC649) can be used, but tests needed.

MAIN COMPONENTS

➤ Chiller power: 5~8 kW @ -50° C (~5 kW from modules in the very worst case scenario assuming 20 W per module, ~3 kW due to heat pick-up along lines);

- Pump: 3.3 m³/h, Δp ≤ 3 bar;
- > Mass of C_6F_{14} : ~300 kg;
- ➢ 96 on/off valves (2 per branch);
- > 48 manual flow regulation valves (1 per branch);
- Liquid tank / expansion vessel (~200 L);
- > 336 connectors between modules;

MAIN DISTRIBUTION LINE

- DN32 (o.d. 42 mm), 1 m/s, 70 m + 70 m (a/r);
- > 5 cm armaflex insulation, $T_{surface} \sim 17^{\circ}$ C, heat pick-up ~12 W/m;
- Temperature rise along 70 m: ~ 0.5 K;
- \succ Δp along 70 m + 70 m ≤ 1 bar

MODULES LINES

- ➢ 48 branches, 6 modules fed in series;
- i.d. 4 mm, o.d. 6 mm, 1.5 m/s;
- > 3 cm armaflex insulation, $T_{surface} \sim 17^{\circ}$ C, heat pick-up ~ 6 W/m;
- Refrigerant temperature rise along 5 m of insulated line: <1 K;</p>
- Refrigerant temperature rise through 6 modules: 3.6 K [assuming 20 W per module];
- > HTC: 1200 Wm⁻²K⁻¹, refrigerant-to-wall Δ T: 2.6K [assuming 20 W per module];
- > Δp through 6 modules (3 m + 24 bends) \leq 1 bar.

EXPECTED SILICON DIE TEMPERATURE (worst case scenario)

- > Assumption, ΔT through ceramic stiffener, flex-cable, teflon substrate < 3K;
- > Silicon die at the beginning of the first module fed: -43.9° C;
- > Silicon die at the end of the last module fed: -40.3° C.

Serial vs parallel module connection

Serial connection is to be preferred to parallel connection:

- > Much lower length to insulate \rightarrow easier to install, lower heat load;
- Optimal flow rate in every module (good for HTC inside the pipes and heat pick up);
- ➤ Connectors can be installed between each module: in case of problems the two on/off valves can be closed, only 6 modules over 288 will be off, the faulty module alone can be removed.