Possibilities for cooling the SiPMs of the LHCb upgraded scintillating fibre tracker with blends of C_2F_6/C_3F_8 saturated $C_nF_{(2n+2)}$ fluorocarbons

G. Hallewell

Centre de Physique des Particules de Marseille

- FT will consist of 12 planes, arranged in 3 stations along the beam, spacing in pairs likely
 Each plane, 6 m (w) x 5 m (h) contains 12 x 53 cm wide modules, read out top & bottom
- SiPM arrays 53 cm long, each contain 16 x 33mm-long SiPMs, inside module "end-caps".
- Each end-cap will have 10 W heat load (mainly parasitic: SiPMs dissipate mW. not including losses in incoming , outgoing connections: guess overall load 1.5-2 higher =20W

→ total required cooling power 12 x 12 x 2 x (10-20)W →~ 3-6kW.

Each module to have own cooling structure inside,
→ significant manifolding.

Limited space between planes big challenge Approach with warm cooling & flexible tubes preferred

Lowest level cooling "branch" will serve one side of 6 modules (series?), →48 branches, each dissipating 60→120W.

Ideally, there should be "gas envelopes" flushed with dry gas around the end caps, like with all deep-cooled detectors. This would be a radical solution to a humidity condensation and the edge insulation problems. Real-life solutions should represent <u>approximations</u> to this approach.

G. Hallewell: LHCb Workshop on SiPM cooling for Fiber Tracker, CERN Oct 17, 2013

Cooling requirements: Ref: P.Gorbounov PH-LBO

Draft SiPM cooling system spec. for the FT for upgraded LHCb: V 1.1: update 23/9/13

- SiPM (*silicon die*) operation at -40°C → -50°C
 (factor 2 drop in noise every 10 °C reduction)
- Power load (48 parallel circuits of 60-120W) → Total 3-6kW
- Temperature uniformity ≤ 1 °C over SiPM (length = 33mm)
- Temperature stability $\leq \pm 1$ °C (timescale ~ 8 hrs)
- Fluid should be dielectric, low viscosity, non-flammable, non-toxic, radiation tolerant (6·10¹¹ n(1 MeV)cm⁻² & 50 Gy (ionizing);
- Cooling plant distant from detector (B field). No fans, pumps etc. in cooling distribution area (dome loaded regulators OK). Existing cooling plant in service cavern ~70 m from detector. LHCb pit depth = 110 m.

G. Hallewell: LHCb upgrade scintillating fibre tracker cooling workshop, CERN Oct 17, 2013

Loca requirements: Ref: P.Gorbounov PH-LBO

Draft SiPM cooling system spec. for the FT for upgraded LHCb: V 1.1: update 23/9/13

- No condensation/frost in cold enclosure, or external surfaces. Gas tight enclosure flushed, dry gas (D.P. ≤-70°C)
- External module surface temp > D.P. in cavern (10-12°C).
- Modularity : Self-contained pre-assembled modules, no access to inner structures at the FT integration stage.
- Inlet & outlet structures on module side(s), not vertical
- (unless cooling connections flexible with no or thin insulation.)
- Clearance between FT planes ~40 mm (?).

Limits insulation on in/out piping, favours warm external connections

 Coolant distribution : <u>48 branches</u> (one per 6 end caps of every half-layer side (top/bottom)). Half-layers slide apart, distribution lines to each of <u>24</u> half-layers needs flexible section matching "caterpillar" cable trays.

Some advantages of saturated C_nF_(2n+2) fluorocarbons

- Dielectric, low visc., non-flamm., non-toxic, radiation resistant;
- Long experience of use at CERN as monophase (mainly C₆F₁₄) & evaporative (C₃F₈, C₄F₁₀) coolant, and as Cherenkov radiators (C₂F₆, C₅F₁₂, C₆F₁₄, C₄F₁₀, CF₄);
- Evidence that increased C₂F₆ molar conc. in C₂F₆/C₃F₈ blends reduces evaporation temperature in systems with pre-constrained input/exhaust services; →
- Blends rich in C₂F₆ offer possibility low temperature operation (close to or below -55°C: CO₂ snow point) with comparatively low pressure in on-detector cooling channels;
- Lower T_{CRIT}, P_{CRIT} than CO₂
- The use of hybrid thermosiphon exploiting the 112 m deep LHCb pit can allow condenser cooling with a single stage secondary refrigeration plant.

Studies of C_2F_6/C_3F_8 blends in a simulated SCT bi-stave structure

Evidence that increased C_2F_6 molar concentration in the blends reduces operating temperature in systems with pre-constrained input/exhaust services

(ATLAS inner tracker: as-installed through-detector uninsulated C₃F₈ liquid delivery/vapour return tubes) **ATLAS SCT barrel bi-stave thermal model** 30 m uninsulated coolant tubes: local hex & exhaust heater, 48 modules: 2 capillaries, common exhaust

ATLAS SCT barrel bi-stave thermal model 30 m uninsulated coolant tubes: local hex & exhaust heater, 48 modules: 2 capillaries, common exhaust

ATLAS SCT barrel bi-stave thermal model 30 m uninsulated coolant tubes: local hex & exhaust heater, **48** modules: 2 capillaries, common exhaust

mm

Module power 0 → 10,5 W/ module temperature sensors on tube equidistant between modules (12 cm between modules)

G. Hallewell: LHCb Workshop on SiPM cooling for Fiber Tracker, CERN Oct 17, 2013

TUUL

G. Hallewell: LHCb Workshop on SiPM cooling for Fiber Tracker, CERN Oct 17, 20

Sliding vane liquid booster pump 3m below condenser, descending tube precooled with glycol

G. Hallewell: LHCb Workshop on SiPM cooling for Fiber Tracker, CERN Oct 17, 2013

P-h diagram for 75%C₃F₈/25%C₂F₆ (liquid subcooling to -23°C note: zeotropic temperature "glide")

Dummy barrel SCT bi-stave: temp. profiles in pure C₃F₈ &75%C₃F₈/25%C₂F₆ (Back pressure (30 m downstream) at 1.2 bar_{abs})

G. Hallewell: LHCb Workshop on SiPM cooling for Fiber Tracker, CERN Oct 17, 2013

Temperature gain (max. of 25 temperatures along 3.2m tube) vs. %C₂F₆ molar concentration in C₃F₈/C₂F₆ blend (Back pressure (30 m downstream) at 1.2 bar_{abs})

Warm services outside the SiPM Tracker... Care needed!

(ATLAS inner tracker suffers from as-installed through-detector uninsulated C_3F_8 liquid delivery/vapour return tubes and lack of dynamic flow control)

- → high compression ratio (x20) in 2 stage compressors
- compressor fragility and expensive ongoing maintenance
- thermosiphon replacement
- Constant mass flow overdrive
 - (for 120% * worst case module dissipation)

requires powerful exhaust heaters (partially immersed) which have had serious reliability problems

The present ATLAS configuration

Trying to keep warm services outside the SiPM tracker purged gas enclosure...

Dynamic flow control advatage

Advantage of flow regulation after full pre/sub cooling C₂F₅ H (R125: pentafluoro-ethane) P-h diagram (following idea of Petr Gorbounov) Is this fluid radiation-resistant enough (contains H, F, C)?? - Question for Sorin Ilie

Enthalpy (kJ/kg)

G. Hallewell: LHCb upgrade scintillating fibre tracker cooling workshop, CERN Oct 17, 2013

Candidate compressor (Haug, oil-less, Pin ~ 1 bar, Pout ~ 9 bar) to be returned to CERN from Oxford in November 2013 (ex. C₃F₈ phase 2 6kW demonstrator (Vacek, Hallewell: 2000) & SCT C₃F₈ evaporative cooling commissioning (Viehhauser))

G. Hallewell: LHCb upgrade scintillating fibre tracker cooling workshop, CERN Oct 17, 2013

Flow control elements can be 'dome loaded' regulators with analog compressed air signals converted in I/P or V/P converters from DAC voltages/currents

Ideally, there should be "gas envelopes" flushed with dry gas around the end caps, like with all deep-cooled detectors. This would be a radical solution to a humidity condensation and the edge insulation problems. Real-life solutions should represent <u>approximations</u> to this approach.

First stage precooling can be distributed along tube, if insulation is allowed

Flow regulation after partial pre/sub cooling is more responsive "plus nerveux" and may be necessary if there is no space for local flow regulator on detector

Enthalpy (kJ/kg)

G. Hallewell: LHCb upgrade scintillating fibre tracker cooling workshop, CERN Oct 17, 2013

Condensation risk if vapour exhaust tube temperatures are below the local dew point(s)

Control by Proportional, Integral & Derivative *firmware* in microcontroller; $p(t) = K_c[e(t) + (1/\tau_I) \int_0^t e(t^*) dt^* + t_D(de/dt)]$

Object: maintain temperature downstream of heat exchanger few °C above external dew point

- Temperature sensors or current coils \rightarrow microcontroller analog inputs;
- Microcontroller DAC outputs (0-10VDC, 4-20mA) E/P, I/P converter
- E/P, I/P generates proportional air pressure to dome of flow regulator (varying coolant mass flow)

Note: Evaporation temperature -40 → -50°C settable by dome pressure applied to backpressure regulator in exhaust line (not dynamically varied)

Dome loaded flow (pressure) regulators (a) and backpressure regulators (b)

Many heat exchanger combinations possible: example without circuit-specific sub-cooling or dynamic flow control Cascaded local heat exchangers with 20°C intermediate cooling liquid (C_6F_{14} ?) might be possible

_ __ __ __ __ __ __ __ __

Heat exchangers can be made compact if is there space near the tracker

Achieving the low required SiPM temperature with blends, (an a reasonably comfortable condenser temperature)

G. Hallewell: LHCb Workshop on SiPM cooling for Fiber Tracker, CERN Oct 17, 2013

P-h diagram: 70%C₃F₈/30%C₂F₆ in hybrid thermosiphon: 9 bar condensation at 0 °C (local liquid subcooling to -45°C:

zeotropic temperature "glide" partially cancelled by dynamic pressure drop)

Enthalpy (kJ/kg)

G. Hallewell: LHCb Workshop on SiPM cooling for Fiber Tracker, CERN Oct 17, 2013

True (compressorless) thermosiphon requires very low condensation pressure (would probably need to use cold N₂ gas heat exchange from LN₂ boil-off)

Enthalpy (kJ/kg)

 C_3F_8/C_2F_6 blends might be adaptable to SiPM cooling (30-35% C_2F_6 if services are to remain uninsulated)

Although low radiation level might allow HFCs $(C_2F_5H \rightarrow C_2F_4H_2?)$

- True thermosiphon requires very cold condenser (<-70C)
- Single stage compressor available: might meet needs alone or in hybrid thermosiphon

Large cost saving in re-use of plant.

→ Use of local heat exchangers with dynamic flow control could meet requirement of uninsulated liquid supply &vapour returns; otherwise would need active insulation on liquid supply tubes and maybe on exhaust (length minimized through dynamic flow control)

Back-up slides

P-h diagram: 65%C₃F₈/35%C₂F₆ in hybrid thermosiphon: 9 bar condensation at 0 °C (local liquid subcooling to -45°C): zeotropic temperature "glide" partly cancelled by dynamic pressure drop)

Enthalpy (kJ/kg)

G. Hallewell: LHCb Workshop on SiPM cooling for Fiber Tracker, CERN Oct 17, 2013

Pressure (bar)

True (compressorless) thermosiphon requires very low condensation pressure (would probably need to use cold N₂ gas heat exchange from LN₂ boil-off)

Enthalpy (kJ/kg)

G. Hallewell: LHCb Workshop on SiPM cooling for Fiber Tracker, CERN Oct 17, 2013

43

'Thermosiphon' to eliminate unreliable compressors completely from the primary fluorocarbon cooling loop

 92m height of ATLAS pit generates
 ~13 bar hydrostatic (ρgh) pressure in C₃F₈ or C₃F₈/C₂F₆ liquid

 But... ρgh of 92m height of rising C₃F₈ or C₃F₈/C₂F₆ vapour adds only ~70mbar

G. Hallewell: LHCb Workshop on SiPM cooling for Fiber Tracker, CERN Oct 17, 2013

ATLAS Thermosiphon condenser cooling plant (for 60kW at -60°C)

G. Hallewell: LHCb Workshop on SiPM cooling for Fiber Tracker, CERN Oct 17, 2013

ATLAS Thermosiphon condenser (for 60kW at -60°C)