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Possibilities for cooling the SiPMs of the LHCDb
upgraded scintillating fibre tracker with blends
of C,F¢/CsFgsaturated CpF,np) fluorocarbons
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- FT will consist of 12 planes, arranged in 3 stations along the beam, spacing i irs likely
- Each plane; 6 m (w) x 5 m (h) contains ' : top & bottom

- SiPM arrays 53 cm long, each contain 16 x 33mm-long SiPMs, inside module “end-caps”.
- Each end-cap will have 10 W heat load (mainly parasitic: SiPMs dissipate mW. not
including losses in incoming , outgoing connections:

=» total required cooling power 12 x 12 x 2 x (10-20)W =»~ 3-6kW.

Each module to have own cooling
structure inside,
=» significant manifolding.
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SiPMs In here

Lowest level cooling ""branch™
will serve one side of 6 modules (series?),

ot

=1

=>48 branches, each dissipating

emvelopes” flushed with dry gas around the end caps, like with all
Id be a radical solution to a humidity condensation and the
ife solutions should represent approximations to this
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7, 8 — composite side insulation plates (Rohacell+ 40 um Alu foil)
9— 2 mm Alu skins

10— upper insulation plug (Rohacell + Alu foil)

11 -2 mm threaded insert, with M2.5 holes (steel)
12 — thermal interface pad (silicon)

13 — cooling pipe (copper, 5x5 mm, OD 3 mm)

14 - cooling pipe cover (PC)

15 — pipe pressing bar (Rohacell + Alu foil)

16 — M2.5 steel pressing screws (x18)

17 — nylon M5 bolts

18 — steel M4 screws

19 — dummy flex PCB

20 — dummy fibre mat (1.5 mm rigid plexiglas sheet)



Cooli reqwrW

Draft SiPM cooling system spec. for the FT for upgraded LHCb: V 1.1: update 23/9/13

e SiPM (silicon die) operation at -40°C = -50°C
(factor 2 drop in noise every 10 °C reduction)
+ Power load (48 parallel circuits of 60-120W)=>Total 3-6kW
e Temperature uniformity < 1 °C over SiPM (length = 33mm)
e Temperature stability < +1 °C (timescale ~ 8 hrs)
® Fluid should be dielectric, low viscosity, non-flammable,
non-toxic, radiation tolerant (6-10" n(1 MeV)cm= & 50 Gy (ionizing);

* Cooling plant distant from detector (B field). No fans, pumps
etc. in cooling distribution area (dome loaded regulators OK).
Existing cooling plant in service cavern ~70 m from detector.

LHCb pit depth = 110 m.
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raft SiPM cooling system spec. for the FT for upgraded LHCb: V 1.1: update 23/9/13

e No condensation/frost in cold enclosure, or external surfaces.
Gas tight enclosure flushed, dry gas (D.P. <-70°C)

e External module surface temp > D.P. in cavern (10-12°C).

e Modularity : Self-contained pre-assembled modules,

no access to inner structures at the FT integration stage.

* Inlet & ou ' ertical
unless cooling connections flexible with no or thin insulation.) >

* Clearance between FT planes ~40 mm (?),

Limits insulation on in/out piping, favours warm external connectioD

e Coolant distribution : 48 branches (one per 6 end caps of every
half-layer side (top/bottom)). Half-layers slide apart,
distribution lines to each of 24 half-layers needs flexible section
matching “caterpillar” cable trays.
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Flexible exhausts
(combined?)

2 of 48 cooling circuits, servicing 1 of 24 half modules
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Some advantages-of saturated C;Fn.) fluo rbons

¢ Dielectric, low visc., non-flamm., non-toxic, radiation resistant;

* Long experience of use at CERN as monophase (mainly C¢F,,) &
evaporative (C,Fg, C,F,,) coolant, and as Cherenkov radiators
(C,Fs, CF,,, CeF,y, C,F,, CE,);

* Evidence that increased C,F¢ molar conc. in C,Fs ,C,Fg blends
reduces evaporation temperature in systems with pre-constrained
input/exhaust services; =

* Blends rich in C,Fg offer possibility low temperature operation

(close to or below -55°C: CO, snow point) with comparatively low
pressure in on-detector cooling channels;

® Lower Ty Pegpr than CO2

* The use of hybrid thermosiphon exploiting the 112 m deep LHCb
pit can allow condenser cooling with a single stage secondary

refrigeration plant.
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| Studies of C,F./C4F,blends in a

simulated SCT bi-stave structure

Evidence that increased C,F; molar concentration in the blends
reduces operating temperature in systems with pre-constrained
Input/exhaust services

(ATLAS inner tracker: as-installed through-detector
uninsulated C;Fg liquid delivery/vapour return tubes)
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ATLAS SCT barrel bi-stave thermal mo

uninsulated coolant tubes: 1o aust heater,
48 modules: 2 capillaries, common exhaust
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ATLAS SCT barrel bi-stave thermal mo

uninsulated coolant tubes: 1o ust heater,
48 modules: 2 capillaries, common exhaust
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ATLAS SCT barrel bi-stave thermal mo

uninsulated coolant tubes: 1o ust heater,
48 modules: 2 capillaries, common exhaust
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Module power 0 = 10,5 W/ module R
. temperature sensors on tube p—
Ny equidistant between modules

~(1Zcm between modules) ig
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@_ R404a refrigeration
system (-40 =» 40 °C)

Glycol-water
C cooled h.ex.
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W Id booster pump 3m below conden
descending tube precoole C
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P-h diagram for 75%C,F4/25%C,F =
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Temperature gain (max. of 25 temperatures along 3.2m tub
. %C,F, molar con 5

(Back pressure (30 m downstream) at 1.2 bar )
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rm services outsi 124\
Tracker... Care needed!

(ATLAS inner tracker suffers from as-installed through-detector
uninsulated C;Fg liquid delivery/vapour return tubes and lack of
dynamic flow control)

=» high compression ratio (x20) in 2 stage compressors
=» compressor fragility and expensive ongoing maintenance
=» thermosiphon replacement

=» Constant mass flow overdrive
(for 120% * worst case module dissipation)

requires powerful exhaust heaters (partially immersed)
which have had serious reliability problems
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The present ATLAS configuratior
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————

Trying to keep warm services
outside the SIPM tracker purged
gas enclosure...

Dynamic flow control advatage
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Advantage of flow regulatlon after full pre/sub cooling C,Fe H

idea of Petr Gorbounov)

—
[
©
0
S
[4})
=
=
2]
2]
<)
e
o

Evaporatlon pressure at -45=»-50°C might be a little too low
for long distance vapour return to compressor;
Operation in oil-less compressor OK?
PP ]

300, 400,

Enthalpy (kJ/kg)
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Candidate compressor (Haug, oil-less, Pln 1 bar, Pout ~ r
returned to CERN fro er 2013
(ex. C;F4 phase 2 6kW demonstrator (Vacek, Hallewell: 2000)
& SCT C,F4evaporative cooling commissioning (Viehhauser))

G. Hallewell: LHCb upgrade scintillating fibre tracker cooling workshop, CERN Oct 17, 2013 24




/\/

Flow control elements can be
‘dome loaded’ regulators
with analog compressed air signals
converted in I/P or V/P converters
from DAC voltages/currents
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Pre-cooled liquid (-50°C)
coolant to on-detector
capillary (1)

iquid fluorocarbon coolant (20°C) to SiPM on-detector cooling channel (1)

2/48 circuits

turnlng evaporant (vapour 20°C) from subcooling heat
l &(eha,ng.er cells for oﬁ«detector coolant circuits —‘

| (to remote (Aomes[o Laded)‘back pressure regulators) [ I ]
- gy ‘~F

e ————— > M-controller with analog input
[m==—==—- «==n Pl I|&" + current DAC

e t Liquid fluorocarbon coolant (20°C) to SiPM on-detector cooling channel (2)
I . |

Near-local subcooling with dome-loaded
regulator flow regulation

Dry gas
envelope

- Temp sensor or dV in current
carrying coil around tube

-—‘ Back-Pressure Regulator
——M—» (at periphery of tracker volume)

Dome-loaded flow Regulator
(at periphery of tracker volume)

Z Cell of multi-channel heat exchanger
(at periphery of tracker volume)




Heat exchangers/

Local flow regulators here? :
ﬂ'.,' gl = =52 Sl -
Gl
R/ electronlcs

SlMs In hére

Pillar 1

Ideally, there should be “gas envelopes” flushed with dry gas around the end caps, like with all
desp-cooled detectors. This would be a radical solution to a humidity condensation and the
edge insulation problems. Real-life solutions should represent approximations to this

approach.
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First stage precooling can be distributed along tube,
If insulation is allowed

Precooling Supply Tabe:
Flow set by Forward

Regulator (shared)

Precooling Capillary
== (insunlation stripped off)

/“r-

Icm “ARMAFLEX” INSULATION

LIQUID BUNDLE CaFs LIQUID TUBESFOR ALUMINIUM FOIL

PRE COOLING THERMOSTRUCTURES || UNDER ARMAFLEX . -
TRACER TUBE : Precooling Retarm Tabe:

Precooling Temperatare
Set by Backpressure
Thermal layer Reglllator(shamd)

Kapton heater
Al foil

Armaflex Insulg
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Flow regulation after partial pre/sub cooling is more res
snerveux”’ and may be neces ' IS0 space for
local flow regulator on detector

1
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Con jon risk’i st tube atures
are below the local dew point(s)

Control by Proportional, Integral & Derivative firmware in microcontroller;
p(t) = K [e(t) + (/1) Iote(t*)dt* + tp(de/dt)]

Object: maintain temperature downstream of heat exchanger few °C above external dew point

- Temperature sensors or current coils = microcontroller analog inputs;
- Microcontroller DAC outputs (0-10VDC, 4-20mA ) =» E/P, I/P converter

- E/P, I/P generates proportional air pressure to dome of flow regulator
(varying coolant mass flow)

Note: Evaporation temperature -40 =»-50°C settable by dome pressure
applied to backpressure regulator in exhaust line (not dynamically varied)
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D ressure) regulator
and backpressure regulators (b)
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Many heat exchanger
combinations possible:

example without circuit-specific sub-cooling
or dynamic flow control
=» Cascaded local heat exchangers
with 20°C intermediate cooling liquid (C.F,,?)
might be possible
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Pre-cooled liquid (-50°C)
coolant to on-detector

capillary (1) [
v P | I |Precooling FC evaporant (20°C) to several heat

K
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Pre-cooled liquid (-50°C) Liquid fluorocarbon coolant (20°C) to SiPM on-detector cooling channel (1)
coolant to on-detector

capillary (1) Precooling FC evaporant (20°C) to several heat
I~ exchangers for SiPM on-detector coolant circuits
—dRA
l Precooling FC evaporant (vapour 20°C) from several
‘ heat exchanger cells for on-detector coolant circuits

(to remote back-pressure regulator)

Pre-cooled liquid (-50°C)

coolant to on-detector
— capillary (2)

2/48 primary circuits,
20°C liquid reheats exhaust vapour

id fluorocarbon coolant (20°C) to SiPM on-detector cooling channel (2)

_ — A
—— F_C&/a oLz.int (vapour 20°C) from SiPM on-detector
coolant channel (2)(to remote back-pressure Tegatator

Exhaust vapour reheating FC fluid return (>20C) from N
several heat exchanger cells for on-detector coolant circuits

Exhaust vapour reheating FC fluid (>20°C) : to several heat
exchangers for on-detector coolant circuits

— A
FC evaporant (vapour 20°C) from SiPM on-detector K
coolant channel (1) (to remote back-pressure regulator)

Lo - ‘ Cell of multi-channel heat exchanger
(at periphery of tracker volume)




Heat exchangers can be made compact
If IS there space near the tracker
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Achieving the low required
SIPM temperature with blends,
(an a reasonably comfortable
condenser temperature)
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Evaporatlon pressure at -45=»-50°C might be a little too low
for long distance vapour return to compressor;
Probably need 30-35% C,F,

S S e | ARSI RR AR

100,0 150,0 200,0 250,0 300,0 350,0

Enthalpy (kJ/kg)

G. Hallewell: LHCb Workshop on SiPM cooling for Fiber Tracker, CERN Oct 17, 2013



0l
&

r
//

‘ “ | \l \ \ \'\ \H»\‘Ja\maa -
70%C;F,
130%C,F,

Enthalpy (kJ/kg)

G. Hallewell: LHCb Workshop on SiPM cooling for Fiber Tracker, CERN Oct 17, 2013



AR s

Remote exchanger to heat liquid above 7O%C3 FB/BO%CZ F6 :
cavern dewpoint L T <
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-~ _tene ressions;/

C,F4/C,F blends might be adaptable to SiPM cooling
(30-35% C,F if services are to remain uninsulated)

Although low radiation level might allow HFCs (C,F:H =»C,F,H,?)
 True thermosiphon requires very cold condenser (<-70C)

* Single stage compressor available:
might meet needs alone or in hybrid thermosiphon

Large cost saving in re-use of plant.

=>» Use of local heat exchangers with dynamic flow control could
meet requirement of uninsulated liquid supply &vapour returns;

otherwise would need active insulation on liquid supply tubes and

maybe on exhaust (length minimized through dynamic flow control)
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Back-up slides
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P-h diagram: 65%C.F;/35%C,F in hybrid thermosiphon: 9 bar con
at 0 2C (local liquid subcoolingto - :
zeotropic temperature “glide”partly cancelled by dynamic pressure drop)

65%CFy
35%C,F

,,

Pressure (bar)

A
| | | | H\

Enthalpy (kJ/kg)
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Remote exchanger to heat liquid above 65%C3 F8/35%C2 F6
cavern dewpoint R T ———————
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‘Thermosi ? iminate unreliable com rs

pletely from the primary fluorocarbon cooling loop

* 92m height of ATLAS pit generates
~13 bar hydrostatic (pgh) pressure
In C;Fg or C,F4/C,F¢ liquid

“ But... pgh of 92m height of rising
C;Fg or C;F,/C,F, vapour adds only
~70mbar

1<

1
UX15 | USA15
1

' IMELTE]

! valve
6 X SCT 4 gas lines,

1

BPR
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AT osiph den
cooling plant (for 60kW at -60°C)
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