# Ceph Storage in OpenStack

Part 2



Jens-Christian Fischer jens-christian.fischer@switch.ch @jcfischer @switchpeta

#### Ceph

## Distributed, redundant storage

Open Source Software, commercial support

http://inktank.com







#### **Ceph Design Goals**

- Every component must scale
- There can be no single point of failure
- Software based, not an appliance
- Open Source
- Run on commodity hardware
- Everything must self-manage wherever possible

http://www.inktank.com/resource/end-of-raid-as-we-know-it-with-ceph-replication/



#### **Different Storage Needs**

- Object
  - Archival and backup storage
  - Primary data storage
  - -S3 like storage
  - Web services and platforms
  - Application Development
- Block
  - -SAN replacement
  - -Virtual block devices, VM Images
- File
  - -HPC
  - Posix compliant shared file system



#### Ceph

Objects

Virtual Disks Files & Directories

Ceph Gateway Ceph Block Device Ceph File System

Ceph Object Storage



### **Storage in OpenStack**

- Glance
  - Image and volume snapshot storage (metadata, uses available storage for actual files)
- Cinder
  - -Block Storage that is exposed as volumes to the virtual machines
- Swift
  - Object Storage (think S3)

## Ceph as Storage in OpenStack



http://www.inktank.com/resource/complete-openstack-storage/



# Ceph @ SWITCH



#### **Cloud @ SWITCH**

Serving the Swiss university and research community

4 major product releases planned

- "Academic Dropbox" early Q2 2014
- "Academic IaaS" mid 2014
- "Academic Storage as a Service" and
- "Academic Software Store" later in 2014

Built with OpenStack / Ceph



#### "Current" Preproduction Cluster

- 1 Controller Node
- 5 Compute Nodes (expected 8)
- Total 120 Cores
- 640 GB RAM
- 24 \* 3 TB SATA Disks: ~72 TB Raw Storage
- OpenStack Havana Release
- Ceph Dumpling

#### First Planned Production Cluster

- Havana/Icehouse Release
- Ceph Emperor/Firefly
- 2 separate data centers
- Ceph cluster distributed as well (we'll see how that goes)
- Around 50 Hypervisors with 1000 cores
- Around 2 PB of raw storage

## **Storage numbers**

• Dropbox: 50 - 250'000 users => 50 TB - 2.5 PB

• laaS: 500 - 1000 VMs => 5 TB - 50 TB

Storage as a Service: 100 TB - ?? PB

There's a definitive need for scalable storage



#### OpenStack & Ceph

- Glance images in Ceph
- Cinder volumes in Ceph
- Ephemeral disks in Ceph

Thanks to the power of Copy on Write

- "Instant VM creation"
- "Instant volume creation"
- "Instant snapshots"



#### Ceph Support in Havana

- Almost there basic support for Glance, Cinder, Nova
  - Edit config file, create pool and things work (unless you use CentOS)
- Not optimized: "Instant Copy" is really
  - download from Glance (Ceph) to disk
  - upload from disk to Cinder (Ceph)
- Patches available, active development, should be integrated in Icehouse

#### **Object Storage**

Use RadosGW (S3 compatible)

#### Current use cases:

- A4Mesh: Storage of hydrological scientific data
- SWITCH: Storage and Streaming of Video Data

Some weird problems with interruption of large streaming downloads

#### **Shared Storage for VMs**

Investigating NFS servers, backed either by RBD (Rados Block Device) or by Cinder Volumes

Not our favorite option, but currently a viable option.

Questions about scalability and performance

#### **Block Devices**

Cinder volumes
Boot from Volume

Nicely works for Live Migration

Very fast to spawn new volumes from snapshots

### CephFS as shared instance storage





## CephFS for shared file storage

Be careful about Linux kernel versions (3.12 is about right)
Works under light load
Be prepared for surprises

Or wait for another 9 months (according to word from Inktank)



#### **Experience**

- Ceph is extremely stable and has been very good to us
- Except for CephFS (which for the time being is being deemphasized by Inktank)
- Software in rapid development some functionality "in flux" – difficult to keep up. However: Gone through 2 major Ceph upgrades without downtime
- The Open{Source|Stack} problem: Documentation and experience reports strewn all over the Interwebs (in varying states of being wrong)

#### Would we do it again?

- Yes!
- Ceph is incredibly stable
  - -unless you do stupid things to it
  - or use it in ways the developers tell you not to
- Responsive developers, fast turnaround on features

#### **Nitty gritty**

- http://ceph.com/docs/master/rbd/rbd-openstack/
- https://github.com/jdurgin/nova/tree/havana-ephemeral-rbd
- https://review.openstack.org/#/c/56527/
- http://techs.enovance.com/6424/back-from-the-summitcephopenstack-integration