

Plasma ignition and steady state simulations of CERN's Linac4 H⁻ ion source

Linac4 ion source review

The Linac4 H⁻ ion source

Plasma chamber

- L = 136 mm
- $\Phi = 48 \text{ mm}$

RF coil

- 3 to 6 turns
- 2 MHz
- 100 kW peak power available

Pulsed operation

- 2 Hz rep. rate
- 500 µs pulses
- Plasma newly ignited at each pulse

Simulate the RF-plasma coupling

- Plasma ignition
- Transition to steady state and stabilization during the pulse
- Long term goal: optimization of the source geometry and operational parameters (e.g. coil position, number of turns, RF power, H₂ pressure)

14/11/2013

RF-plasma-light emission

14/11/2013

S. Mattei – Linac4 ion source review

Vacuum electric field

Courtesy of Alexej Grudiev

Vacuum magnetic field

Courtesy of Alexej Grudiev

Electro Magnetic PIC - MCC

2.5 D model in cylindrical coordinate system

- 3D3V particle dynamics
- EM fields calculated in 2D averaging in θ -direction
- $\quad E = E_{RF} + E_{pl} \qquad B = B_{RF} + B_{pl}$

Monte Carlo Collision method

- 540 reactions: e⁻-neutral and e⁻-ion collisions simulated by the Null-Collision method, e.g.
 - Elastic collision: $e^- + H \longrightarrow e^- + H$
 - Ionization: $e^- + H \longrightarrow e^- + H^+ + e^-$
 - Dissociation: $e^- + H_2(X^1 \sum_g^+) \longrightarrow e^- + H(1s) + H(1s)$
- NO ion-ion collision nor ion-neutral collisions at present
- Gas taken as a background gas of constant density at 3 Pa

Code parallelized via Message Passing Interface (MPI)

Simulation parameters

Parameter	Ignition	Steady state
Initial particle number	4800	24000
Specific weight	5×10^4	1×10^{7}
Initial e- density	$1 \times 10^{12} \text{ m}^{-3}$	$1 \times 10^{15} \text{ m}^{-3}$
Initial p ⁺ density	$1 \times 10^{11} \text{ m}^{-3}$	$1 \times 10^{14} \text{ m}^{-3}$
Initial H ₂ ⁺ density	9 × 10 ¹¹ m ⁻³	$9 \times 10^{14} \text{ m}^{-3}$
RF power	7 kW	7 kW
Cell size	1x1 mm	1x1 mm
H ₂ gas pressure	3 Pa	3 Pa
H ₂ temperature	300 K	300 K
Initial e- temperature	15 eV	1.5 eV
Time step	10 ⁻¹² s	10 ⁻¹² s
Collision time step	10 ⁻¹⁰ s	10 ⁻¹⁰ s

Resources – EPFL cluster

2 nodes of 48 cores each – 96 cores

AMD Opteron 6176 (Magny-Cours) à 2.3 GHz

196 GB RAM per node - 392 GB

Simulation time – 400 cores day per μs

14/11/2013

S. Mattei – Linac4 ion source review

Capacitive plasma ignition

Inductive heating to steady state

Inductive heating to steady state – Inverted polarity

Remarks

- Plasma ignition
 - Dominated by the capacitive coupling
 - Low plasma density allows the RF fields to penetrate in the middle of the plasma chamber to induce a push-pull effect
 - Protons and H_2^+ less influenced by the external fields due to larger inertia

Steady state regime

- At higher density the plasma heating is dominated by the inductive coupling
- 4 MHz ripple observed in the plasma e⁻/ion density and energy
- Hints into plasma waves in the azimuthal direction (investigation ongoing)
- RF high voltage polarity has a strong influence on the plasma parameters spatial distribution
- Equilibrium is the result of the balance of production vs. losses

Collision Radiative model prediction

Preliminary results on 1 cycle during plasma ignition - 0 Electron density [m⁻³] THE Normalized antenna current 24 1e+17 10000000000 r [mm] 1e+15 16 1e+13 8 1e+11 0.5 0 1e+09 H_{α} intensity 0 10+18 29 Integrated light -0.5 £ 10 16+17 central view port -1 1e+16 0 0.25 0.5 0.75 8.E+03 time [µs] density (a.u.) --Haipha ----Hbeta ---Hgamma Normalized antenna current Electron density [m⁻³] • -1 (7 kW-RF) electron 24 e+17 r [mm] e+15 16 e+13 vd by 0.5 8 4.E+03 e+11 0 e+09 0 H_{α} intensity line intensity nor 1e+18 -0.5 20 (15 2 10 1e+17 -1 5 0 0.25 0.75 1e+16 ۵ 0.5 0 20 40 60 80 100 120 0.E+00 z (nn) time [µs]

Courtesy of Takanori Shibata

2.0E-07

time (s)

0.0E+00

4.0E-07

CR model vs. Photometry

We have simulated the plasma ignition and the steady state regime in the Linac4 H⁻ ion source

- Obtained first insights into the capacitive ignition and the transition to inductive heating mechanisms
- Steady state reached at a plasma density of 10¹⁸ m⁻³
- Compared results between CR model prediction and photometry measurements
- Could lead to the simulation to the only observable during operation

14/11/2013

S. Mattei – Linac4 ion source review

Inclusion of new physics

- 1. H⁻ production mechanisms surface + volume (1 year)
 - Neutral transport
- 2. Ion collisions (3 months)
- 3. Coulomb collisions: e⁻-e⁻ (1 year)
 - Electron thermalization
 - Diffusion across the filter field
- 4. Wishful upgrade to fully 3D code to take into account the real magnetic field configuration

Informatics

Inclusion of new physics will result in a further computational cost

- Code optimization speedup
- Hybrid parallelization

Sensitivity studies

- Runs with variation of the source parameters (e.g. RF power, H₂ pressure)
- Inclusion of average magnetic cusp field to get first insights

Experimental campaign

14/11/2013

End 2013

Thanks to all of our collaborators

- KEIO University (Japan)
 - A. Hatayama, K. Nishida, M. Ohta, T. Shibata, T. Yamamoto, M.Yasumoto
- CERN
 - E. McIntosh
 - M. Husejko, I. Agtzidis, N. Hoimyr (IT Dept.)
 - A. Grudiev (BE Dept.)
 - T. Pieloni (BE Dept.)
- École Polytechnique Fédérale de Lausanne (EPFL)
 - L. Rivkin

THANK YOU FOR YOUR ATTENTION

14/11/2013