

LHC Injectors Upgrade

2nd Linac4 Ion Source Review - Introduction -

CERN

R. Garoby 14/11/2013

Once connected to the PSB, Linac4 will be the source of all protons at CERN, for all experimental facilities (ISOLDE, AD, nToF, East Area, SPS North Area and LHC).

In addition to beam characteristics, **availability & stability of performance are crucial requirements** (e.g. for the future HL-LHC, where robust injectors are key to minimize turnaround time).

https://indico.cern.ch/conferenceDisplay.py?ovw=True&confld=260492

No experiment supported our proposal of connecting Linac4 to the PSB with H⁻ injection at 160 MeV during LS1 and LS2 because of the 4.5 months of additional interruption of proton physics.

- It is likely that the new baseline schedule of LHC will foresee the connection of Linac4 to the PSB (160 MeV H⁻) during LS2. The start of LS2 itself is probably going to be in the second half of 2018.
- 2. The planning of the Linac4 project will however not change, to preserve a working alternative to Linac2, in case of failure.
- 3. Hence the goal for the H⁻ ion source is to be of nominal characteristics at the latest in February 2016, when the reliability run will start.

LHC slipped baseline (typical example)

	J	F	М	Α	М	J	J	Α	S	0	Ν	D	Days/yea
			-										
2011		1	2	3	4	5	6	7	8	9	IONS		200
2012			1	2	3	4	5	6	7	8	9		200
2013	IONS IONS LS1 - SPLICE CONSOLIDATION												C
			-										
2014													C
2015	CHECK-OUT	RECOM	RECOM	1	2	3	4	5	6	7	IONS		130
						·							
2016		RECOM	1	2	3	4	5	6	7	8	IONS		160
						•							
2017	EXTENDED	YEAR END	TECHNICAL	STOP	RECOM	1	2	3	4	5	IONS		100
						·							
2018		RECOM	1	2	3	4	5	6	7	8	IONS		160
			•	•									
2019	19 LS2 (LIU UPGRADE: LINAC4, BOOSTER, PS, SPS)										C		
	_		-										
2020							RECOM	RECOM	1	2	3	4	80
2021		1	2	3	4	5	6	7	8	9	IONS		190
2022		RECOM	1	2	3	4	5	6	7	8	IONS		160
2023	3 HL-LHC UPGRADE - PHASE 1 (Inner triplets)												0
			•	•	-								
2024	HL-LHC UP	GRADE											0

Mandate of the Review Committee

- a) Review of the linac4 ion source Work Package; Compare what has been achieved with respect to what was planned and review what is foreseen. Lessons?
- b) Estimate the probability of having a sufficient beam current (40, 60, 80 mA) within the right emittance (0.25 mm.mrad) and the right duration (100 + 400 μ s) in time for the final commissioning (February 2016).
- c) Is it still necessary to pursue an alternative solution, and is the magnetron source still considered as the most appropriate option? When a decision has to be made and what has to be prepared to make such a source available on-time for the final commissioning of Linac4?

Thank you in advance for your help and support!