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• Ideas: 

• Use the standard (HV)CMOS technologies to implement particle detectors 

• Use a high voltage to deplete the sensor volume – charge collection by drift 

• Original implementation: CMOS electronics inside the deep n-well-collecting electrode 

• “Smart diode” 
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• Some drawbacks: 

• The standard substrates are relatively low resistive (~20 Ωcm) 

• The depleted region is up to ~15 µm thick – MIP signals are relatively weak ~ 1800 e 

• The collection electrode is, at the same time, the PMOS bulk – there is a strong capacitive 

crosstalk from PMOS transistors to the detector input. 

• General drawback of monolithic sensors: Complex in-pixel electronics leads to increased detector 

capacitance or to decreased electrode-/pixel-size ratio  
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• We investigate two detector structures: 

• A) Hybrid detector with a “smart” HVCMOS sensor and capacitive signal transmission to the 

readout ASIC (capacitively coupled pixel sensor - CCPD) 

• B) Monolithic pixel detector with digital signal processing on the chip periphery 
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• CCPD 

• ATLAS-pixel “style”: digital outputs of three pixels are multiplexed to one pixel readout cell 

• HVCMOS pixel contains an amplifier and a comparator 

• CLIC “style”: every HVCMOS pixel has its own readout cell 

• HVCMOS pixel contains only an amplifier 

+ 

TOT = sub pixel address 

Readout pixel Readout pixel 

Size: 50 µm x 250 µm 

Size: 33 µm x 125 µm 

Size: 25 µm x 25 µm 

Size: 25 µm x 25 µm 

Different logic 1 levels 
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Monolithic HVCMOS pixel sensor for Mu3e experiment 
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Monolithic HVCMOS pixel sensor for Mu3e experiment 

RAM/ROM 
Hit flag 

Priority scan logic 

Time stamp Data bus 

Read 

Row/Col Addr + TS 

One RO cell 

/pixel 

Readout cell function – time stamp is stored when 

hit arrives 

Hit data are stored until the readout 

Priority logic controls the readout order 

RO cell size in 0.18 µm AMS technology ~ 7 µm x 

40 µm 

(with comparator and threshold-tune DAC) 
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Concept: Every pixel has its own readout cell, placed on the chip periphery 
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Monolithic HVCMOS pixel sensor for Mu3e experiment 
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92µm 

3 mm 

Readout cell 

One pixel 



Ivan Peric, 9th “Trento” Workshop on advanced silicon radiation detectors 2014 

MuPixel (readout-cell) 
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TS DRAM Address ROM 

CMOS digital part 

Comparator 

Coupling capacitor DAC and SRAM 7µm 

46 µm 
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MuPixel test beam 

• Test-beam measurement February 2014 DESY 

• Performed by our colleagues from Institute for Physics 

in Heidelberg 

• Plots: Moritz Kiehn, Niklaus Berger 
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MuPixel test beam 

• Test-beam measurement February 2014 DESY 

• Performed by our colleagues from Institute for Physics in Heidelberg 

• Plots: Moritz Kiehn, Niklaus Berger 
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80ns 

Probably caused by indirect hits 
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Periphery area estimation for ATLAS pixels 

RAM/ROM Hit flag 

Priority scan logic 

Time stamp 

Data bus 

Read 
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Global readout 

Periphery size ~ 2.5 % 

Delayed TS and trigger 

Readout cell function – time stamp is stored when 

hit arrives 
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time stamp 
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Priority logic controls the readout order 

Estimated cell size in 0.18 µm AMS technology 

without comparator ~ 7 µm x 50 µm  

Example: Pixel size 50 µm x 250 µm 

Chip size: ~ 2 cm x 2 cm 

Number of pixels: 400 x 80 

Size of periphery without comparator: 

2 cm x 560 µm (~ 2.5%) 
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Concept: Every pixel has its own readout cell, placed on the chip periphery 
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HVCMOS pixel sensor for ATLAS 
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• We need to improve time walk 

• We need to improve SNR of CCPDs for ATLAS, especially after irradiation 

• Three strategies: 

• 1) optimize present design 

• 2) invent more clever electronics 

• 3) improve the detector structure and technology 
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Time Walk Compensation 
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Time Walk Compensation 
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• The idea: Adding of low-pass filter decreases the noise without increasing the power consumption 

• => Better SNR, lower threshold 

• However: a slow output signal leads to a time-walk 

• Time walk is caused 1) by the fluctuations of the input signal and 2) by the low and signal-

dependent response speed of the electronics 

• Can we compensate for time walk, without decreasing the shaping time constants? 
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Time Walk Compensation 

• Imagine a comparator which has the output zero-to-one transition speed, that depends on the 

input signal “overdrive” 

• High amplitude signal – faster threshold crossing but slower 0-1 transition 

• Low amplitude signal – slower threshold crossing but faster 0-1 transition 

• Result: the threshold-crossing- and the transition time skews compensate each other  

• Second comparator generates time-walk free signal 

Slow down 

Slow down 

Higher amplitude 

Lower amplitude 

2 
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Time Walk Compensation – AMS 350 nm 

TW 62ns 

3600e 

900e 

Max 3600e:468ns 

Max 900e:408ns 

TW 62ns 

• Noise=8.8mV, Thr=55mV, Bias current=10µA, Pixel size = 50x250µm, Ifoll=10, amplifier power 

200mW/cm2 

Shaper Output 
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Time Walk Compensation – AMS 350 nm 

TW 4ns 

3600e 900e 

• Noise=8.8mV, Thr=55mV, Bias current=10µA, Pixel size = 50x250µm, Ifoll=10, amplifier power 

200mW/cm2 

 

Comparator Output 
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Time Walk Compensation 

3600e 

900e 

TW 75ns 

• Noise=8.0mV, Thr=55mV, Bias current=10µA, Pixel size = 50x500µm, Ifoll=7, amplifier power 

100mW/cm2 

 

Shaper Output 
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Time Walk Compensation 

TW 5ns 

3600e 900e 

• Noise=8.0mV, Thr=55mV, Bias current=10µA, Pixel size = 50x500µm, Ifoll=7, amplifier power 

100mW/cm2 

 

Comparator Output 
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Time Walk Compensation 

3600e 

900e 

TW 116ns 

• Noise=7.9mV, Thr=55mV, Bias current=5µA, Pixel size = 50x500µm, Ifoll=5, amplifier power 

50mW/cm2 

 

Shaper Output 
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Time Walk Compensation 

TW 8ns 

3600e 
900e 

• Noise=7.9mV, Thr=55mV, Bias current=5µA, Pixel size = 50x500µm, Ifoll=5, amplifier power 

50mW/cm2 
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Detector structure improvements 
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Isolated PMOS 
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• Detector structure improvements: 

• Isolated PMOS 

• Eliminates PMOS to sensor crosstalk, allows more freedom when pixel electronics is designed 
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High resistive substrates 

• Detector structure improvements: 

• High resistive substrates 
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High resistive substrates 

• Detector structure improvements: 

• High resistive substrates 

• These improvements are possible within AMS- and LFoundry processes 

• AMS agreed to use substrates of up to 3000 Ωcm (350nm process H35) 
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AMS TSV process 
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TSV – bask side RDL 

nwell 

Transistor 

M1 

M3 

M4 

RDL 

(MET4_TSV) 

Wire bond 

Bump 

Wire bond pad 

(PAD_TSV) 

VIAT_TSV 

Read out Chip 

CMOS Side 

Sensor 

Backside RDL 

• AMS offers through silicon vias and wafer bonding (so far only for H35, from end of 2015 for H18 

as well) 

• Backside redistribution layer and backside pads are possible 

• TSV pitch 260 µm 

• Very important for the module construction 
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Pixel detectors 

… 

Readout chip 

Detector as it is done now: 

Diode based pixel sensor bump-bonded to 

readout ASICs 
Present development: 

CMOS pixel sensor capacitively 

coupled to readout ASICs 

With TSVs 

CMOS pixel sensor with 

backside contacts 

capacitively coupled to readout 

ASICs 

PCB 

Pixel sensor 

(diode based) 

(e.g. 8 x 2cm) 

CMOS pixel 

sensor 

several reticles 

(e.g. 4 x 2 cm) 

Readout chip 

Pixel sensor 

Readout chips 

Wire bond for 

sensor bias 

Wire bonds for 

RO chips 

Wire bonds for 

RO chips 

Wire bonds for 

sensor chip 

Readout chips 

CMOS pixel sensor 

Capacitive 

signal 

transmission 
CMOS pixel 

sensor 

several reticles 

(e.g. 4 x 2 cm) 

Readout chip 

Wire bonds for 

sensor chip 

Wire 

bonds for 

RO chips 

CMOS pixel sensor with backside contacts 

TSVs 

Backside contact 

PCB 
PCB PCB 

Capacitive 

signal 

transmission 



Ivan Peric, 9th “Trento” Workshop on advanced silicon radiation detectors 2014 
31 

Pixel detectors with TSVs 

… 
CMOS pixel sensor 

several reticles 

(e.g. 4 x 2 cm) 

Readout chip 
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Pixel sensor 
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Pixel detectors with TSVs 
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• Type B: sensor- and readout chip contacts on the back side of the sensor chip 

• Allows readout chip- to sensor-wafer bonding 

• If backside RDL is used, it allows, in theory, large area hybrid detectors 

• About 1.5% of the area may be covered by the test structures; lateral signal collection from these 

regions is probably possible  

HVCMOS sensor 
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Developments ongoing 
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New H18 CCPD chip 
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• The new CCPD test chip in AMS H18 technology has been produced last week 

• The chip contains test matrices with three types of pixels 

• Type A – improved standard pixel from previous prototypes, we expect better threshold uniformity, 

lower noise, faster response  

• TypeB - new type of pixel (LowCap-Pixel or HVMAPS) with separated electronic and electrode, 

sub pixel size 25 µm x 125 µm 

• CLIC pixels, size 25 µm x 25 µm 
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no PMOS x-talk 
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New H18 CCPD chip 
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• We are planning an engineering run in ~June 2014 within DEPFET project 

• DEPFET does no need entire area 

• A good opportunity to share the costs with DEPFET and submit larger area HVCMOS test 

structures 

• Price per area would be 450 € + tax which is much less than within a MPW (1100 €) 

• Several pixel types could be implemented: the standard one, standard with the time walk 

compensation, the Mu3e-type, the CLIC-type and the low-capacitance pixel 
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LFoundry engineering run in Bonn 
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• LFoundry 0.13 µm technology is very interesting since it allows high-resistive substrates and 

PMOS isolation 

• 1cm x 1cm test chip is currently being designed mostly by Bonn and CPPM 
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Pixel detectors with TSVs 
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• We are planning an engineering run in ~June 2014 within DEPFET project 

• DEPFET does no need entire area 

• A good opportunity to share the costs with DEPFET and submit larger area HVCMOS test 

structures 

• Price per area wwould be 450 € + tax which is much less than within a MPW (1100 €)   
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High resistive substrates 

• Detector structure improvements: 

• High resistive substrates 

• These improvements are possible within AMS- and LFoundry processes 

• AMS agreed to use substrates of up to 3000 Ωcm (350nm process H35) 
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Signal: ~ 2700e-4500e (estimation) 
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• Collaborations have been formed with the goals to develop HVCMOS sensors for ATLAS- and 

Mu3e experiments, as well for CLIC 

• The Mu3e prototype detector (technology AMS 0.18 µm H18) (design Heidelberg) is a fully 

monolithic sensor with untriggered time-stamp based readout 

• Detection efficiency of >99% has been measured in a beam test, time resolution (time walk) is ~ 

70 ns. 

• The ATLAS prototypes in AMS 0.18 µm (H18) (design HD) and GF 0.13 µm (design CPPM, HD) 

technologies are capacitively coupled smart sensors that can be readout using FE-I4 chip 

• Irradiations and test beam measurements have been performed on the H18 chip 

• The H18-chip is operational after 880 MRad and 1016 neq/cm2 

• A test beam measurement has been performed with the test-setups which are still not optimized 

and in development stage – the threshold uniformity was poor 

• The uniradiated H18-detector had a detection efficiency of >90% in the regions with lower 

threshold 

• The detector irradiated to 1015neq/cm2 had a non-uniform efficiency (in some regions >90%) which 

is still not understood. Time resolution is ~70ns  
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• We need to improve the time walk and the detection efficiency 

• Three approaches: 

• 1) Optimization of the present design 

• 2) Use of low-pass filter and the time-walk compensation circuit 

• 3) Detector structure improvements (isolated PMOS) and the use of substrates of higher resistivity 

• Chip producers AMS and LFoundry allow such “extra features” within their processes 

• Combined monolithic-CCPD prototype detector is currently being designed mostly by Bonn and 

CPPM in LFoundry 0.13 µm process on a high resistive substrate 

• AMS additionally offers through silicon vias and wafer bonding (so far only for H35, from end of 

2015 also for H18 process) 

• Backside redistribution layer and the backside pads are possible 

• Backside contacts may be very important for module construction 

• We are also investigating the use of HVCMOS sensors (segmented strips) for the ATLAS strip 

layers 

• Constant delay lossy multiplexing can be used – every hit is transmitted to one of n outputs with a 

constant delay of ~60 ns. 

• Hit loss occurs only if there are more than n simultaneous hits within one bunch crossing 



Ivan Peric, 9th “Trento” Workshop on advanced silicon radiation detectors 2014 
41 

Segmented strip detector with lossy constant-delay-multiplexing 

A C D B 

Output 1 

Output 2 
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Segmented strip detector with lossy constant-delay-multiplexing 
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Output 2 
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Segmented strip detector with lossy constant-delay-multiplexing 
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Segmented strip detector with lossy constant-delay-multiplexing 
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Segmented strip detector with lossy constant-delay-multiplexing 
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Segmented strip detector with lossy constant-delay-multiplexing 
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Segmented strip detector with lossy constant-delay-multiplexing 
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Segmented strip detector with lossy constant-delay-multiplexing 
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Segmented strip detector with lossy constant-delay-multiplexing 
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Segmented strip detector with lossy constant-delay-multiplexing 
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Segmented strip detector with lossy constant-delay-multiplexing 
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Segmented strip detector with lossy constant-delay-multiplexing 
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Segmented strip detector with lossy constant-delay-multiplexing 
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