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Motivation and Aim 

 The IC technology trend is to move from 3D flexible configurations 
(package on package, stacked dies) to 3D ICs: 

 - increased electrical performances; 
 - cost of 3D integration may be cheaper than to keep shrinking 2D. 

 Perspective advantages for particle tracking / vertex detectors: 
 - separation of sensor, analog read-out electronics, A/D conversion 

 layers (increased fill-factor, performance). 

 All-in-one chip featuring multiple, stacked, fully functional CMOS  APS 
detector layers: 

 - momentum measurement (impact point and trajectory)  
 with a single detector; 

 - low material detector (reduced multiple scattering issues). 
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 3D monolithically-stacked CMOS Active Pixel Sensor detector for single 
ionizing particle trajectory and momentum identification. 

Basic principle 
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Stack of separate multi-layer CMOS APS detectors. 
Worries: multiple scattering and material budget… 

Stack of monolithically integrated (vertical 
scale or 3D) CMOS APS detectors. 
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3D Monolithically Stacked CMOS APS 
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 Is it possible to gain information (on particle trajectory and 
momentum) from small pixels / small inter-layer distances? 

 Device/Circuit simulations of a CMOS Active Pixel Sensor  
to assess the suitability of the approach. 

n-well 

p-sub 
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Impact point reconstruction error 

 Standard deviation of the impact point calculation as a function of 
the incidence angle and hit position. 
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Incidence angle reconstruction error 

 Standard deviation of the incidence angle calculation as a function of 
the incidence angle and hit position. 
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2D 3D 

The 3D Tezzaron 130nm Technology 
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 3D-IC consortium (3dic.fnal.gov) 
Access to 3D Tezzaron/Chartered 130nm technology. 

Schematic cross-section of a front-to-front 
chip bonding (thinned top tier) 

MPW run (“HEP oriented”)   
VIPIX – INFN gr. V (sub-reticles E & F). 
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2D 3D 

2D. 3D Not Aligned. 3D Aligned 
(Ziptronix/Tezzaron). 

The chip structures 
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Tezzaron/GlobalFoundries 
3D-IC Integrated 2-tier stack  
130nm CMOS 



The RAPS04-3D structures 
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 Active Pixel Sensor 3T architecture  
with different photodiode area. 

12 
 



Outline 

 Introduction: motivation and aim, background. 

 The RAPS04-3D structures: (2D), 3D “not aligned”, 3D “aligned”.  

 Electrical characterization (noise). 

 X-ray characterization (signal). 

 Characterization with 3MeV protons @ LABEC, Florence (Italy). 

 The next prototype: RAPS05-3D. 

 Conclusions. 

13 
 



Electrical Characterization 
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 Noise distribution 16x16 pixel matrices  – Tezzaron bonded chip 



Electrical Characterization (2) 
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 Noise distribution 16x16 pixel matrices  – Ziptronix bonded chip 
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Functional Characterization (X-rays) 

 The X-ray set-up @ INFN Perugia Laboratories. 

Cu target 

Mini-X source  
x-ray Tube RAPS04-3D 
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Event display: typical responses to a X-ray photon hits 

inner 



Sensor Calibration 
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 X-ray photon energy -> ADC count  – Tezzaron bonded chip 



Sensor Calibration (2) 
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 X-ray photon energy -> ADC count  – Ziptronix bonded chip 



Sensor Calibration (3) 
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 Electrons -> ADC counts 

 1 ADC count -> ~102e for the large photodiode pixel layout 

 1 ADC count -> ~25e for the small photodiode pixel layout 

Better conversion gain 

Fe peak energy 

Energy for e/h 
creation in Si 

𝑒/ℎ =
6.4 𝑘eV

3.6 eV
= 1777  

1777 𝑀𝑒𝑎𝑛 = [𝑒 𝐴𝐷𝐶 ]  
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The set-up at LABEC (Florence, Italy) 

 3MeV protons 
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3 MeV protons response 

 RAPS04-3D 3MeV protons – Outer & Inner tier coincidence responses 

INNER large 

OUTER Large 

INNER Small 

OUTER Small 
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3 MeV protons response (2) 
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Signal distribution & Landau Fit (LARGE) Signal distribution & Landau Fit (SMALL) 
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Angular measurements 
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 Residuals (outer – inner coordinates) for both directions. 

𝛼 = tan−1
𝛥𝑦

𝑑
 



Angular measurements: y-axis displacement 
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Angular measurements: x-axis displacement 
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Angular measurements: Dx and Dy vs. tilt angle 
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~0.5 mm/° 
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RAPS05-3D 

 256x256 pixels (~6.5mm2 area). 

 APS - 3T pixel (10mm x 10mm).  

 4-parallel analog outputs. 

 Control&signal processing circuitry:  
ARM (Artisan) SC library. 

 New pixel design. 

 Bigger matrix. 
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RAPS05-3D (2) 

 COMP (local) density rules -> wider pixel 
sensitive area (n-well)  

 Metal&Poly density -> non-uniform (local) 
metal dummy filling 

 TSV density rules -> TSV dummies on array 
 Contacts between tiers are located only at the 

chip periphery (e.g. within I/O PADs). 
 Redundant bondpoint scheme has been 

adopted (as for RAPS04). 
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RAPS05-3D (2) 

 COMP (local) density rules -> different p-well 
guard layout & smallest n-well 

 Metal&Poly density -> non-uniform (local) 
metal dummy filling 

 TSV density rules -> TSV dummies on array 
 Contacts between tiers are located only at the 

chip periphery (e.g. within I/O PADs). 
 Redundant bondpoint scheme has been 

adopted (as for RAPS04). 
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Conclusions 

 Functional characterization of 3D monolithically stacked CMOS Active 
Pixel Sensors layers (beam test) fabricated in Chartered/Tezzaron 
130nm 3D technology for particle tracking purposes. 

 Coincidence responses between bottom and top matrices have been 
obtained with 3MeV protons from aligned tiers. 

 Particle angular measurement can be carried out by parallel read-out 
of corresponding outer and inner pixel matrices. 

 Momentum measurement with a single, multiple layers, 3D vertically 
stacked APS CMOS detector. 

 Next prototype: bigger sensitive area (efficiency…) and optimized 
charge to voltage conversion gain (w.r.t. the technology node). 
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3D Monolithically Stacked CMOS APS 

 Up to four (isolated) sub-arrays. 
 Voltage response as a function of a particle hit (e/h pairs generation 

corresponding to a Minimum Ionizing Particle). 
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The 3D Not Aligned is anyway ok… 

bottom tier 

bondpoint  
top tier 

bondpoint  

Contact OK!  
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Redundant bondpoint scheme  



 TOP/BOTTOM tier misalignment… 
 RAPS04 3D tomography 
 (courtesy of DESY - Hamburg) 

Top & Bottom tiers (mis)alignment! 

~12mm 

© DESY - Hamburg 
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