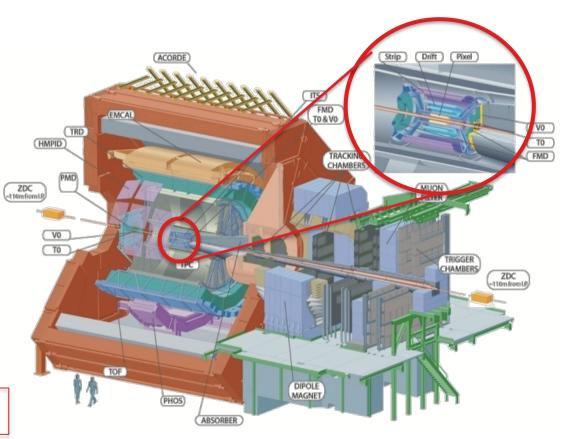
A Large Ion Collider Experiment

9th "Trento" Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014

Development of monolithic silicon pixel sensors for the ALICE ITS upgrade

P. Riedler, CERN for the ALICE collaboration

Outlook


- The upgrade of the ALICE Inner Tracking System (ITS)
- Monolithic silicon pixel sensors for the ALICE ITS
- Recent results on prototype sensors

ALICE Upgrade

The ALICE upgrade during LS2 will allow doing high precision measurements of rare probes at low p_T , which cannot be selected with a trigger, require a large sample of events recorded on tape and improvement on vertexing and tracking capabilities.

→ Upgrade of ALICE readout and online systems

→ Upgrade of the Inner Tracking System

ALICE ITS Upgrade

Improve impact parameter resolution by a factor of ~3 (r-phi)

- Get closer to IP (39 mm) \rightarrow 21 mm (layer 1)
- Reduce material budget (1.14 % X_0) \rightarrow 0.3 % X_0 (inner layers)
- Reduce pixel size (50 μ m x 425 μ m) \rightarrow O(30 μ m x 30 μ m)

High standalone tracking efficiency and p_t resolution

- Increase granularity and radial extension \rightarrow 7 pixel layers

Fast readout

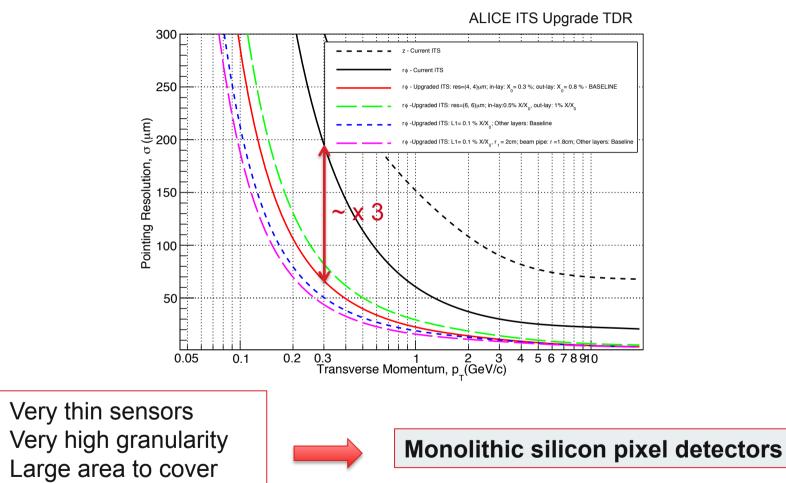
Readout of Pb-Pb interactions at >50 kHz and pp interactions at several 10⁵ Hz (now limited to 1 kHz with full ITS, and ~ 3 kHz without silicon drift)

Fast insertion/removal for yearly maintenance

– Possibility to replace non functioning detector modules during yearly shutdown

٠

•


•

•

ALICE ITS Upgrade

Modest radiation levels

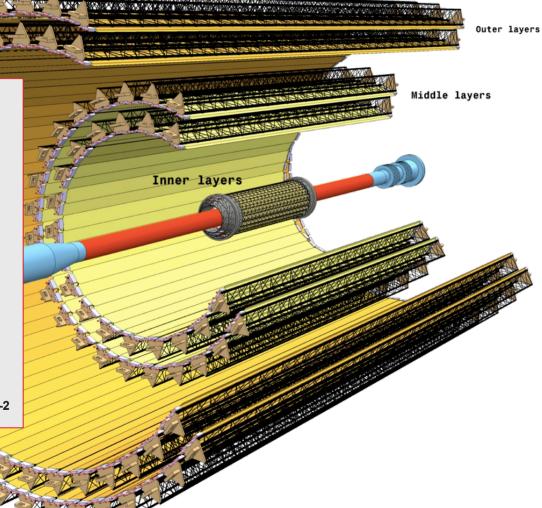
9th Trento Workshop, Genova, P. Riedler, 26.2.2014 5

ALICE ITS Upgrade

3 Inner Barrel layers (IB) **4** Outer Barrel layers (OB)

Radial coverage: 21-400 mm

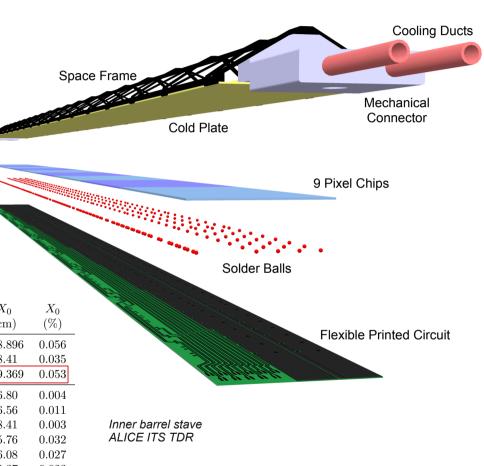
~ 10 m²


 $|\eta| < 1.22$ over 90% of the luminous region

0.3% X₀/layer (IB) 0.8 % X₀/layer (OB)

25 Giga-pixel tracker

Radiation level (L0): 700 krad/10¹³ n_{eq} cm⁻²


Upgrade of the ALICE Inner Tracking System CERN-LHCC-2013-024 ; ALICE-TDR-017

ALICE ITS Upgrade

Light weight, compact modules:

 50 µm silicon sensors connected via solder points to a 2-layer Alpolyimide flex cable

Component	Material	$\begin{array}{c} {\rm Thickness} \\ {\rm (\mu m)} \end{array}$	X_0 (cm)	X_0 (%)
FPC Metal layers	Aluminium	50	8.896	0.056
FPC Insulating layers	Polyimide	100	28.41	0.035
Pixel Chip	Silicon	50	9.369	0.053
	Carbon fleece	40	106.80	0.004
	Carbon paper	30	26.56	0.011
Cooling tube wall	Polyimide	25	28.41	0.003
Cooling fluid	Water		35.76	0.032
Carbon plate	Carbon fibre	70	26.08	0.027
Glue	Eccobond 45	100	44.37	0.023
	Carbon rowing			0.018
				0.262
	FPC Metal layers FPC Insulating layers Pixel Chip Cooling tube wall Cooling fluid Carbon plate	FPC Metal layersAluminiumFPC Insulating layersPolyimidePixel ChipSiliconCooling tube wallCarbon fleece Carbon paperCooling fluidWaterCarbon plateCarbon fibreGlueEccobond 45	FPC Metal layers Aluminium 50 FPC Insulating layers Polyimide 100 Pixel Chip Silicon 50 Carbon fleece 40 Carbon paper 30 Cooling tube wall Polyimide 25 Cooling fluid Water Carbon plate Carbon fibre 70 Glue Eccobond 45 100	FPC Metal layersAluminium508.896FPC Insulating layersPolyimide10028.41Pixel ChipSilicon509.369Carbon fleece40106.80Carbon paper3026.56Cooling tube wallPolyimide2528.41Cooling fluidWater35.76Carbon plateCarbon fibre7026.08GlueEccobond 4510044.37

ALICE ITS Sensor Technology

- 0. 18 µm CMOS imaging sensor process (TowerJazz)
- High resistivity epi layer on p-type substrate
- Special deep-p-well layer to shield PMOS
 - \rightarrow true CMOS circuitry in the pixel

NWELL NMOS PMOS TRANSISTOR TRANSISTOR

Schematic cross-section of CMOS pixel sensor (ALICE ITS Upgrade TDR)

- Nwell diode output signal = Q/C
 - \rightarrow minimize charge spread over different pixels
 - \rightarrow minimize capacitance
 - \rightarrow small diode surface (~ 100x smaller than pixel area) and large depletion volume

ALICE ITS Sensor Development

Prototype chips produced on a variety of starting wafers:

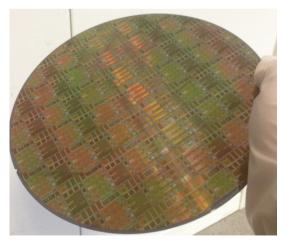
- Dedicated engineering run (March 2013)
 - 26 different dies in one reticle (23.5 x 31 mm) to study different architectures
- New engineering run submitted in Jan. 2014

Evaluation of the different prototype chips

(thinned to 50 μm) using source tests (Fe55) and test beams.

Special thanks to the team at DESY who provided

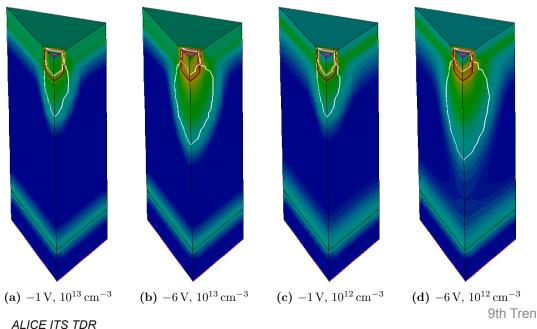
help & support during 60 days of testbeam in 2013!

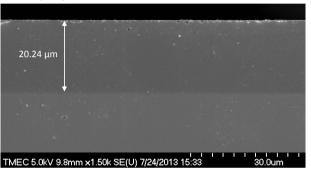

Measurements before and after irradiation to 0.25,

1 and 3 x 10¹³ 1 MeV n_{eq} cm⁻².

C3_RAL 11.26*4.2 mm2	3 <mark>1 - Ako</mark> M 3-3+3- 3-3+3-	
2_MIMOSA22THR_82 4.04 x 11.34 mm2		
1_MIMOSA22THR_a1 4.04 x 1F.26 mm2	0rthoPix 3.2*44.04 m#n2	
C4_MIMOSA34 11.24 x 4.4 mm2	OrthePix 3.2*44.04 m#n2	MXT_CERN_4 15.85*4 pere
S. ATTRONADA	B5_MIMOSA32 PEE1 5.7/2k3.3 mim2	All Annosati All A

Reticle layout and wafer engineering run 03/2013

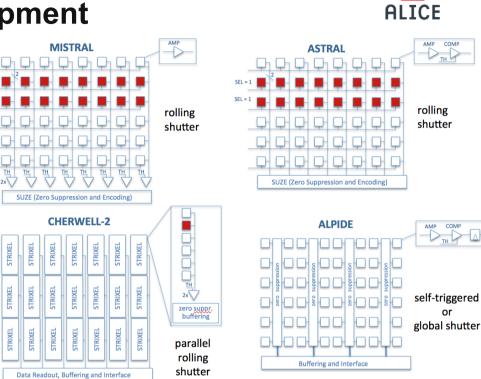



ALICE ITS Sensor Development

Starting wafers used in the engineering run 03/2013 (ALICE ITS TDR):

Type	Number of wafers	Epitaxial Thickness (µm)	Resistivity $(k\Omega cm)$
1 (LR-12)	3	12.0 ± 0.5	0.03
2 (HR-18)	4	18.0 ± 1.5	>1
3 (HR-30)	3	30.0 ± 0.3	≈ 1
4 (HR-40A)	3	40.0 ± 0.6	≈ 1
5 (HR-20)	6	20.0 ± 1.9	6.2
6 (HR-40B)	3	40.0 ± 1.9	7.5
7 (CZ)	3	CZ	>0.7

SEM: epi layer and substrate thickness



TCAD simulation of an n-well diode $(3 \ \mu m \ x \ 3 \ \mu m)$:

- using 2 different doping levels for the epi-layer and
- two reverse bias settings
- logarithmic colour scale of the electric field
- White line shows depletion region

ALICE ITS Sensor Development

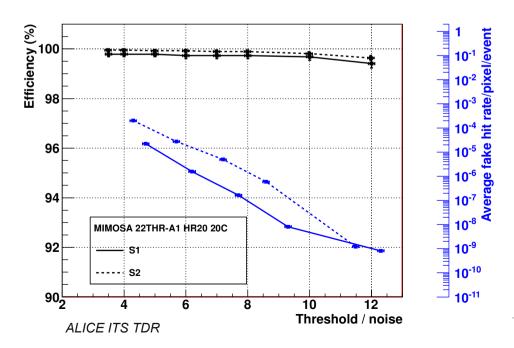
- 4 different architectures under study
 - Selection for the final chip planned for end 2014
- Prototype chips available for each architecture
- In the following a selection of results is presented from:
 - MIMOSA22THR, MIMOSA32ter (MISTRA/ ASTRAL)
 - Explorer0 and Explorer1 (ALPIDE)

ALICE ITS TDR

Architecture (discriminator, read-out)	Pitch $(r\phi \times z) \ (\mu m^2)$	Integration time (μs)	Power consumption $(mW cm^{-2})$
MISTRAL (end-of-column, rolling-shutter)	22×33.3	30	200
ASTRAL (in-pixel, rolling-shutter)	$\begin{array}{c} 24\times31\\ 36\times31 \end{array}$	20	85 60
CHERWELL (in-strixel ^{a} , rolling-shutter)	20×20	30	90
ALPIDE (in-pixel, in-matrix sparsification)	28×28	4	< 50

 $^a\,\mathrm{A}$ strixel is a 128-pixel column over which the electronics are distributed.

9th Trento Workshop, Genova, P. Riedler, 26.2.2014 11

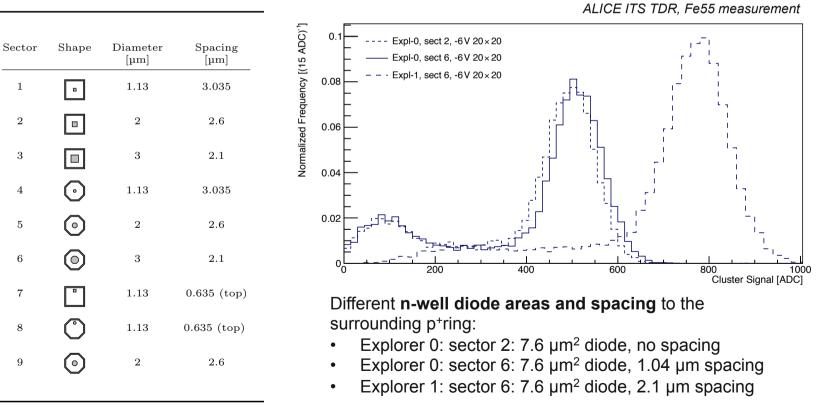


MIMOSA22THR

Prototype chip of the MISTRAL/ASTRAL family with pre-amplifier and CDS in pixel circuitry and parallel column readout with offset compensated discriminators at the end of column.

- Used to validate the upstream part of the MISTRAL and most of the ASTRAL readout.
- Version a: single row rolling shutter, version b: double row rolling shutter.
- Noise measurements: 19 e⁻ ENC (a), 20-23 e⁻ ENC (b)

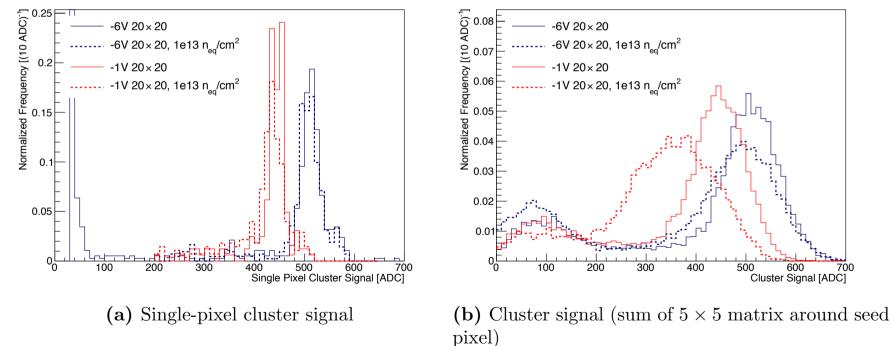
MIMOSA22THRa test beam measurement


HR20 wafer (20 µm epi layer thickness) Pixel size: 22 µm x 33 µm

Explorer 0 and Explorer 1

Prototype chips of the ALPIDE family to study the charge collection and diode layout as well as the effect of back-biasing.

• 2 sub-matrices (20 µm x 20 µm and 30 µm x 30 µm pixels)



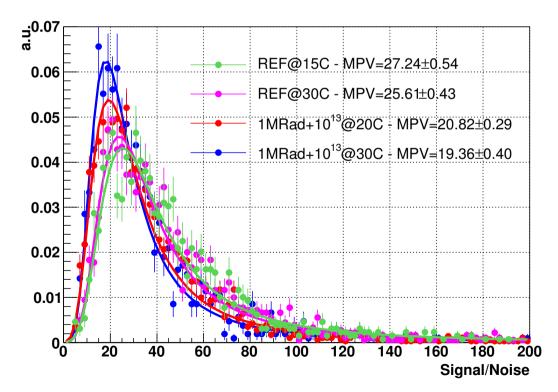
Explorer 0 before/after irradiation

Explorer 0 irradiated to 1x10¹³ 1MeV n_{eq} cm⁻²

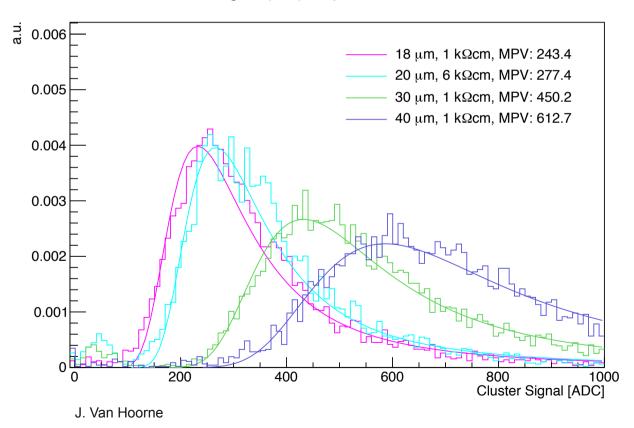
- 2 bias settings (-1V, -6V)
- N-well diode: 7.6 µm2 with 1.04 µm spacing •
- Noise increases by 5-15% (different pixel sizes and diode geometries) •

ALICE ITS TDR, Fe55 measurement

500 600 70 Cluster Signal [ADC]


700

MIMOSA32ter


S/N measured in the SPS testbeam for **MIMOSA32ter chips before and after irradiation** (combined irradiation 1 Mrad TID + 10^{13} 1 MeV n_{eq} cm⁻²)

- S/N decrease due to noise increase after irradiation
- Cluster signal remains unchanged

Explorer 1

Study of different starting materials (pixel size 20 µm x 20 µm), Desy testbeam 2013:

Cluster Signal (5x5), Explorer-1, A1-E2, Sector 5

Explorer 1

Study of different starting materials (pixel size 20 µm x 20 µm), Desy testbeam 2013:

2 competing processes:

- Cluster charge increases linearly with the epi layer thickness
- Cluster size increases for thicker epi layer thicknesses

Best SNR: 30 μm @ -6V 20 μm @ -1V

Summary

- A new ALICE ITS will be installed during LS2, replacing the present silicon tracker with 7 layers of monolithic silicon pixel detectors.
- Different architectures are under study in testbeams and laboratory measurements using prototype chips.
- Several starting materials have been included in a recent engineering run, allowing to study the effects of different epi layer thicknesses and resistivities.
- Radiation tests up to the levels expected for the innermost layer in the new ITS show no signal degradation in the prototype chips and a noise increase between 5 and 15%, depending on the pixel and diode geometry.