Characterization of CNM's 3D pixel sensors for the CMS Phase-2 upgrade

Francisca J. Muñoz Sánchez

Instituto de Física de Cantabria

 $"g^{th} \ \textit{TRENTO WORKSHOP ON ADVANCED SILICON RADIATION DETECTORS"}$

Genova. 27th February, 2014

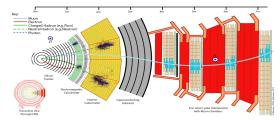
M. Lozano G. Pellegrini D. Quirion

E. Currás, M. Fernández G.Gómez, R. Jaramillo <u>F.J. Muñoz,</u> I. Vila

《曰》 《聞》 《臣》 《臣》 三臣 …

T. Rohe

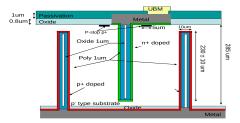
Contents


- 2 Description
- 3 Electrical Characterization
- 4 Interconnection Process
- 5 Radioactive Source Characterization
- 6 Test Beam Characterization

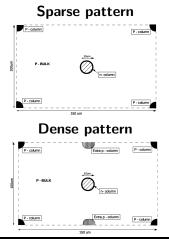
7 Conclusions

Motivation

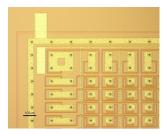
Description Electrical Characterization Interconnection Process Radioactive Source Characterization Test Beam Characterization Conclusions


Motivation. From LHC to HL-LHC

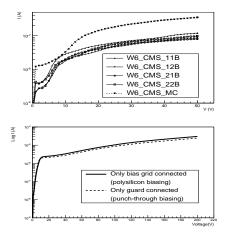
- Luminosity: $\mathbf{10}^{34}\cdot cm^{-2}\cdot s^{-1}\rightarrow 5{\times}10^{34}\cdot cm^{-2}\cdot s^{-1}$
- Particle fluences:6×10¹⁴ n_{eq} \cdot cm⁻² \rightarrow 2×10¹⁶ n _{eq} \cdot cm⁻²
- CMS inner Radius: 4.4 cm \rightarrow 3.3 cm
- Planar n-on-on sensors \rightarrow New Radiation Hard Technology


Description of the technology

- Sensors fabricated at CNM-Barcelona
- Double side configuration
- Simpler process. Photolitography to define metal contacts only in one side
- HV-bias in the back side by simple wire bonding

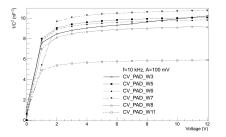


Proposed by G. Pellegrini in 2006


Description of the different layouts

One wafer includes a polysilicon bias grid to bias one to one every pixel unit cell:

Electrical Characterization I

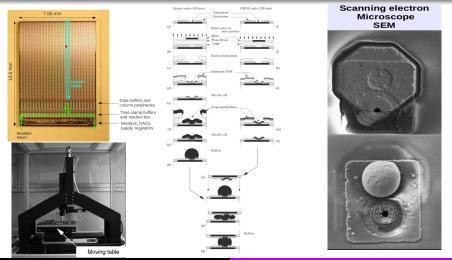

 High Homogeneity and a higher current for the Multi-Chip (MC) sensor (16 single-chips)

• Biasing studies: biasing through the guard ring or through the bias grid

Electrical Characterization II

Coaxial Formula

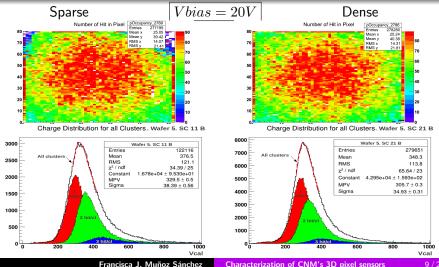
$$V_{fd} = \frac{Nq}{2\epsilon} \left[r_1^2 L n \frac{r_2}{r_1} - \frac{1}{2} \left(r_2^2 - r_1^2 \right) \right]$$



 $r_1
ightarrow {
m column}$ radius. $r_2
ightarrow {
m n+}$ and p+ columns distance.

 V_{FD} was measured in diodes and analytically assessed in pixel sensors.

$$V_{FD,sensor} \sim 6 \cdot V_{FD,diode}$$

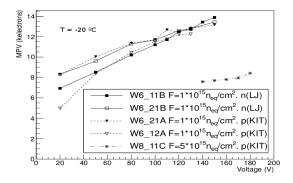

Interconnection Process at PSI

Francisca J. Muñoz Sánchez

Motivation Radioactive Source Characterization Test Beam Characterization

⁹⁰Sr Characterization. Unirradiated sensors

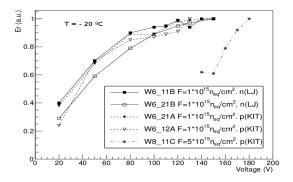
⁹⁰Sr Characterization. Irradiated sensors


- \bullet Protons irradiation up to $5\cdot 10^{15}~n_{eq}\cdot cm^{-2}.$ KIT.
- Neutrons irradiation up to $1\cdot 10^{16}~n_{eq}\cdot cm^{-2}.$ Ljubljana.
- Charge collection efficiency
- Full Depletion Voltage
 - Depletion Area grows vertically
 - Relative Efficiency

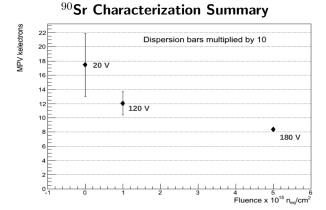
$$E_r = \frac{Number \ of \ hits}{Number \ of \ Triggers}$$

• E_r Saturation implies that the maximal area has been depleted

⁹⁰Sr Characterization. Irradiated sensors I


MPV vs V_{bias}

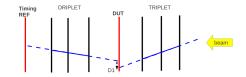
NIM A:http://dx.doi.org/10.1016/j.nima.2013.05.121


⁹⁰Sr Characterization. Irradiated sensors II

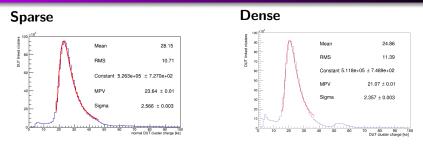
 \mathbf{E}_r vs \mathbf{V}_{bias}

NIM A:http://dx.doi.org/10.1016/j.nima.2013.05.121

⁹⁰Sr Characterization. Irradiated sensors III


NIM A:http://dx.doi.org/10.1016/j.nima.2013.05.121

Test beam Characterization at DESY


- Positron beam of momentum 6 GeV
- Datura Telescope. Mimosa-based pixel telescope.
 - $\sigma = 4-5~\mu m$, readout \sim 100 $\mu {
 m s}$

To avoid telescope pile-ups, a timing reference sensor is needed

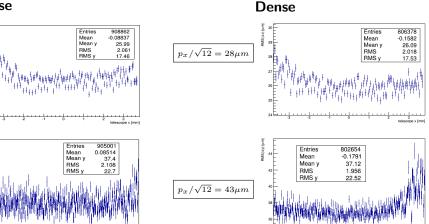
Test beam Results I. Unirradiated

- Charge distribution differences aren't necessary due to the different pattern
- \bullet ROC calibration uncertainties are about 15 %

 $V_{bias} = 20V, Room Temperature$

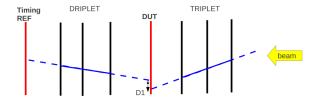
Test beam Results II. Unirradiated

telescope y [mm]


Sparse

n] (xb)SMF

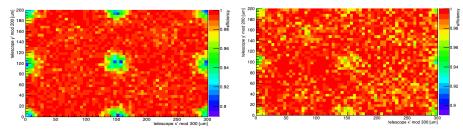
MS(Ay) [µm]


42

25

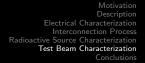
elescope y (mm)

Efficiency tracks selection

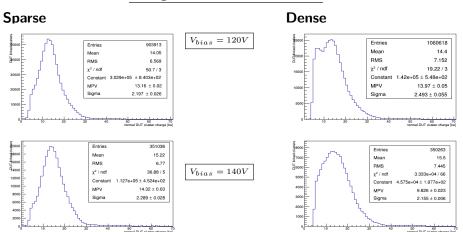


- Driplet linked to DUT and Reference sensor
- Triplet linked to DUT
- D1 < 500 $\mu \rm{m}$

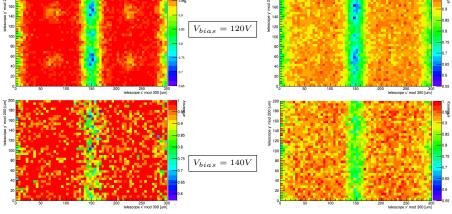
Test beam Results III. Unirradiated


Sparse

Dense


- The sensor including the dense column pattern shows higher homogeneity
- Sparse and Dense drop 6 and 2 %, respectively in the worst case. Normal incidence
- Pn-junction columns don't show a significant efficiency drop

 $V_{bias} = 20V, Room Temperature$


Test beam Results IV. Irradiated up to $1 \cdot 10^{15} n_{eq} \cdot cm^{-2}$

Charge distributions at -15 C

Test beam Results V. Irradiated up to $1 \cdot 10^{15} n_{eq} \cdot cm^{-2}$ SparseEfficiency Maps at -15 CDenseImage: Image: Image

Francisca J. Muñoz Sánchez

Characterization of CNM's 3D pixel sensors

- Electrical Characterization
 - Sensor biasing by the bias grid and by punch-through are in good agreement
- After the ⁹⁰Sr characterization:
 - Sensors up to irradiation fluences of $5\times 10^{15}n_{eq}\cdot cm^2$
 - $\bullet\,$ Sensors show a good performance and applying bias voltages below 200 V
 - Results are compatible with ATLAS-IBL results
- In test beam measurements:
 - Unirradiated dense pattern show a more homogeneous performance in terms of efficiency
 - Irradiated samples need a deeper study
 - Charge distributions \rightarrow PSI46 performance after high irradiation fluences

Acknowledgements

- PSI, ETH and DESY CMS-pixel Teams
- Specially:
 - Hans Christian Kaetsli
 - Andrei Starodumov
 - Dmitry Hits
 - Marco Rossini
 - Daniel Pitzl
 - Simon Spannagel
- Irradiation Facilities: Ljubljana and KIT
- AIDA project

Thank you for your Attention!

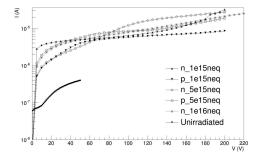

Francisca J. Muñoz Sánchez

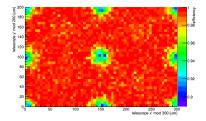
Characterization of CNM's 3D pixel sensors

BACKUP

Strontium-90 characterization

- 90 Sr is a pure electron emitter
- MIP. Particle which kinetic energy \geq 2 \times rest mass

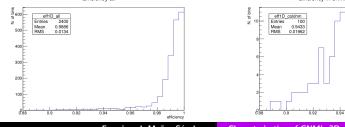

Cold & black box in a N_ atmosphere

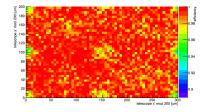

Irradiation Facilities

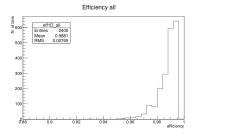
Radiation resistance of 3D pixel sensors was also characterized

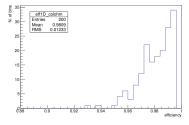
- Continuous energy spectrum of neutrons at TRIGA reactor at JSI (Ljubljana)
- 23 MeV protons at KIT

Irradiated samples. IV Curves in pads

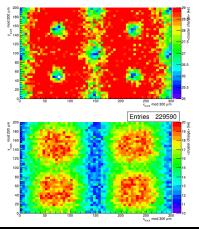



Efficiency in ohmic columns

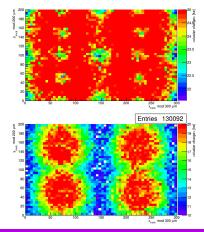

0.96 0.98


Francisca J. Muñoz Sánchez

efficiency



Efficiency in ohmic columns



Charge collection Unirradiated (top) and Irradiated (bottom)

Sparse

Dense

