Development of a PCle DMA
engine verification framework

Michal HUSEJKO
eda.support@cern.ch

Introduction

e About me:
— Working in the CERN eda.support

— I’m responsible for “Introduction to VHDL” course
available from CERN Technical Training Catalog

— I’m also involved in different IT projects
e Trying to stay up to date with (or learn):
— VHDL, tools
— SV+UVM
— Software development and Contiguous Integration

Typical data concentrator

Many projects @CERN looks similar to this ...
FPGA device(s) inside data treatment pipeline
Data IN (could be SFP)

Data OUT (could be PCle, or Ethernet or something
else)

| was involved (2006-2009) in CMS/ECAL DCC project
— Did some basic SV+AVM ! f

An experiment

 VHDL + Verification Environment + Project
Management/Build/Testing system

e VHDL
— PCle DMA engine for FPGA

e Verification Environment
— SV + UVM
 Wrapped with ...

— Complete software (and hardware) development
environment with Contiguous Integration (Cl) setup.

SFP

SFF

SFP

W

SFP
Rx

SFP

SFP

CTRL BUS (32b)

DA

DMA

SFP

e

SFP

o

DMA

DMA

DMA

CTRL

MRAMWT (10W)

CplD (1DW)
CplD

DA

DMA

DMA

cpln -
MR | MWr L
= 3
L 5
» -
L
e -
W W 1 -
L il
Ea — L
- 1
e
i . . W T -
(EE e P
- S l
vyl =
CplD
MR/ M

= pr=———=lr

W

MR ! MW

FCle
Tx

Building blocks

e Application |/O

— In my example, | use a simple interface
(DATA+DAV+SYNC)

— Could carry some protocol like Ethernet
(IP,UDP,TCP)

e |[nterconnect
e System I/O

— Example uses PCle, but could be exchanged to
Ethernet (1/10/40 Gb)

Some assumptions

e Stay vendor independent:
— No QSYS
— No EDK/IP Integrator

Layered Application I/0O

SFP transceiver used to transmit data
Simple signaling:

— DATA + DAV (packet length 1-512 Bytes)

— SYNC/TRIGG (pulse + packet length 0-1 Bytes)

1B

— Random: content, length, gap between packets,
presence of SYNC/TRIGG

— Predefined data patterns to help debugging
Simulation

— Slower Sim: XCVR PHY + IP included
— Faster Sim: No PHY/IP, SV transaction model

Interconnect

e [nternal Interconnect:
— Much simpler than Avalon-ST/AXI Streaming
— Independent Upstream + Downstream patch
— Each direction with DATA+CTRL (example 128b+110b)
— Cut-through or Store-and-forward operation mode
— Split bus protocol (MRd-CpID/Cpl, MWr, Msg [similar to PCle])
— Channels switched with Deficit Weighted Round Robin (
Insolvency enabled)
e TB

— White box verification with assertions (signaling) and
scoreboards (packet level)

e SIM

— Only FIFOs components are vendor dependent

PCl express block

Device Hard IP
— Altera Genl x8 (i.e. Avalon-ST 128b@125 MHz if)
— In the future Gen2 and Gen3 (256b@250MHz)

Split-bus protocol (many transactions in flight)

1B

— Emulation of PC/ARM platform (buffers allocation)
* Involves getting many SignalTap snapshots.
— Split-bus packet (MRd -> CplD/Cpl) has to be handled with “real”
life latency and bandwidth.
SIM
— Slow sim: Altera PCle Verilog BFM wrapped with SVM+UVM

— Fast sim: TLP BFM (limited functionality/does not inject all the
“crap” seen with vendor BFM)

e Interfaces:

— SFP

— PCle

— 12C (sensors: |/U/T)
e SV+ UVM

— VIP 1 —-SFP RX

— VIP 2 —=SFP TX

— VIP 3 —PCle RX + TX

—VIP 4 —12C

1B

Basic verification plan (2)

* SFPTX:

— DMA CFG -> D:MRd -> CplID
-> D:MWr

— DMA RUN -> U:MRd -> CpID (DESC GET)
-> U:MRd -> CpID (DATA GET)

— Forward data (CplD) to SFP TX channel
— DMA DONE -> U:MWr (DESC DONE)
-> U:Msg (INT)

e How to distinguish between

Basic verification plan (2)

* SFP RX:

— DMA CFG -> D:MRd -> CplID
-> D:MWr

— DMA RUN -> U:MRd -> CpID (DESC GET)
Receive data over SFP RX channel

— DMA RUN -> U:MWr (DATA PUT)
— DMA DONE -> U:MWr (DESC DONE)
-> U:Msg (INT)

Git+GitLab

e Git
— Distributed revision control

— Lightweight branching and merging (compared to
SVN)

— Strong support for nonlinear development flow

e GitLab

— Self hosted Git management service (your very own
private GitHub)

— Source file viewing
— Forking projects
— Issue tracking/Wiki/Code snippets exchange

feature release

branches develop branches hotfixes master

Major
feature for

Feature
for future
release

production:
hotfix 0.2
Incorporate
bugfix in

Start of
release

[From this point on,
“next releass”
means the release
after 1.0

Bugfixes from
rel. branch
may be
continuoushy
merged back
into develop

Tag
0.2

Tag
1.0

Jenkins

Continuous Integration
— Regression testing

— Automatic feature verification (bottom line: your
TB has to be self-checking, waveforms only for
debugging)

— Timing analysis (Quartus/Vivado)
— Bitstream builds

— Many plugins (mainly around software
development)

Git / Gerrit Work Flow with Jenkins Continuous Integration

Fetches latest code from blessed
repository

Modifies code and commits
locally

Pushes change for review

/ Git/Gemit

Blessed Git Repositoryin TF

e,

£s
Pending m\

Reviewer

AR

= Getsnotified by email about

lenkins's verification results

= Does not even have tostart

reviewing changes which do not
build or break tests

= Can only submit patches if

verified bit is turned on by
lenkins

Verification

Build

Jenkins picks up review request
in the moment they get pushed
Runs verification build(i.e.
Buid, unit test, integration tests)
Sets ‘verified flag in review
request according to result of
verification build

Jenkins (xUNIT) + UVM

How to use SV+UVM with Jenkins ?

— Good start is to use JUNIT capability available in Jenkins —
you need XML log file which follows JUNIT format

— Easiest way is to replace UVM reporting server with your
own one which generates XML log (already done by
Verilab, source code published)

— Write XSL schema to transform your custom XML into
JUNIT XML format.

— Your own XML + XSL can be feed into Jenkins’ xUnit plugin
which will feed JUNIT plugin automatically.

— From then on, you can use all reporting available in Jenkins
(error reports, trends analysis, etc.)

Summary

 What is working
— Git + GitLab server
— Jenkins + UVM XML reporter + QuestaSim

* Next steps

Learning resources

Verification Academy (courses, videos, forum)
Cadence UVM Book

SystemVerilog for Verification, 3™

Verilab DVcon 2012 paper

CIENA SNUG 2013 Jenkins paper

	Development of a PCIe DMA engine verification framework
	Introduction
	Typical data concentrator
	An experiment
	Slide Number 5
	Building blocks
	Some assumptions
	Layered Application I/O
	Interconnect
	PCI express block
	TB
	Basic verification plan (2)
	Basic verification plan (2)
	Git+GitLab
	Slide Number 15
	Jenkins
	Slide Number 17
	Jenkins (xUNIT) + UVM
	Summary
	Learning resources

