
Development of a PCIe DMA
engine verification framework

Michal HUSEJKO
eda.support@cern.ch

Introduction

• About me:
– Working in the CERN eda.support
– I’m responsible for “Introduction to VHDL” course

available from CERN Technical Training Catalog
– I’m also involved in different IT projects

• Trying to stay up to date with (or learn):
– VHDL, tools
– SV+UVM
– Software development and Contiguous Integration

Typical data concentrator

• Many projects @CERN looks similar to this …
• FPGA device(s) inside data treatment pipeline
• Data IN (could be SFP)
• Data OUT (could be PCIe, or Ethernet or something

else)
• I was involved (2006-2009) in CMS/ECAL DCC project

– Did some basic SV+AVM

An experiment

• VHDL + Verification Environment + Project
Management/Build/Testing system

• VHDL
– PCIe DMA engine for FPGA

• Verification Environment
– SV + UVM

• Wrapped with …
– Complete software (and hardware) development

environment with Contiguous Integration (CI) setup.

Building blocks

• Application I/O
– In my example, I use a simple interface

(DATA+DAV+SYNC)
– Could carry some protocol like Ethernet

(IP,UDP,TCP)
• Interconnect
• System I/O

– Example uses PCIe, but could be exchanged to
Ethernet (1/10/40 Gb)

Some assumptions

• Stay vendor independent:
– No QSYS
– No EDK/IP Integrator

Layered Application I/O

• SFP transceiver used to transmit data
• Simple signaling:

– DATA + DAV (packet length 1-512 Bytes)
– SYNC/TRIGG (pulse + packet length 0-1 Bytes)

• TB
– Random: content, length, gap between packets,

presence of SYNC/TRIGG
– Predefined data patterns to help debugging

• Simulation
– Slower Sim: XCVR PHY + IP included
– Faster Sim: No PHY/IP, SV transaction model

Interconnect
• Internal Interconnect:

– Much simpler than Avalon-ST/AXI Streaming
– Independent Upstream + Downstream patch
– Each direction with DATA+CTRL (example 128b+110b)
– Cut-through or Store-and-forward operation mode
– Split bus protocol (MRd-CplD/Cpl, MWr, Msg [similar to PCIe])
– Channels switched with Deficit Weighted Round Robin (

Insolvency enabled)
• TB

– White box verification with assertions (signaling) and
scoreboards (packet level)

• SIM
– Only FIFOs components are vendor dependent

PCI express block
• Device Hard IP

– Altera Gen1 x8 (i.e. Avalon-ST 128b@125 MHz if)
– In the future Gen2 and Gen3 (256b@250MHz)

• Split-bus protocol (many transactions in flight)
• TB

– Emulation of PC/ARM platform (buffers allocation)
• Involves getting many SignalTap snapshots.

– Split-bus packet (MRd -> CplD/Cpl) has to be handled with “real”
life latency and bandwidth.

• SIM
– Slow sim: Altera PCIe Verilog BFM wrapped with SVM+UVM
– Fast sim: TLP BFM (limited functionality/does not inject all the

“crap” seen with vendor BFM)

TB

• Interfaces:
– SFP
– PCIe
– I2C (sensors: I/U/T)

• SV + UVM
– VIP 1 – SFP RX
– VIP 2 – SFP TX
– VIP 3 – PCIe RX + TX
– VIP 4 – I2C

Basic verification plan (2)

• SFP TX:
– DMA CFG -> D:MRd -> CplD

 -> D:MWr
– DMA RUN -> U:MRd -> CplD (DESC GET)

 -> U:MRd -> CplD (DATA GET)
– Forward data (CplD) to SFP TX channel
– DMA DONE -> U:MWr (DESC DONE)
 -> U:Msg (INT)

• How to distinguish between

Basic verification plan (2)

• SFP RX:
– DMA CFG -> D:MRd -> CplD

 -> D:MWr
– DMA RUN -> U:MRd -> CplD (DESC GET)

Receive data over SFP RX channel
– DMA RUN -> U:MWr (DATA PUT)
– DMA DONE -> U:MWr (DESC DONE)
 -> U:Msg (INT)

Git+GitLab

• Git
– Distributed revision control
– Lightweight branching and merging (compared to

SVN)
– Strong support for nonlinear development flow

• GitLab
– Self hosted Git management service (your very own

private GitHub)
– Source file viewing
– Forking projects
– Issue tracking/Wiki/Code snippets exchange

Jenkins

• Continuous Integration
– Regression testing
– Automatic feature verification (bottom line: your

TB has to be self-checking, waveforms only for
debugging)

– Timing analysis (Quartus/Vivado)
– Bitstream builds
– Many plugins (mainly around software

development)

Jenkins (xUNIT) + UVM

• How to use SV+UVM with Jenkins ?
– Good start is to use JUNIT capability available in Jenkins –

you need XML log file which follows JUNIT format
– Easiest way is to replace UVM reporting server with your

own one which generates XML log (already done by
Verilab, source code published)

– Write XSL schema to transform your custom XML into
JUNIT XML format.

– Your own XML + XSL can be feed into Jenkins’ xUnit plugin
which will feed JUNIT plugin automatically.

– From then on, you can use all reporting available in Jenkins
(error reports, trends analysis, etc.)

Summary

• What is working
– Git + GitLab server
– Jenkins + UVM XML reporter + QuestaSim

• Next steps

Learning resources

• Verification Academy (courses, videos, forum)
• Cadence UVM Book
• SystemVerilog for Verification, 3rd
• Verilab DVcon 2012 paper
• CIENA SNUG 2013 Jenkins paper

	Development of a PCIe DMA engine verification framework
	Introduction
	Typical data concentrator
	An experiment
	Slide Number 5
	Building blocks
	Some assumptions
	Layered Application I/O
	Interconnect
	PCI express block
	TB
	Basic verification plan (2)
	Basic verification plan (2)
	Git+GitLab
	Slide Number 15
	Jenkins
	Slide Number 17
	Jenkins (xUNIT) + UVM
	Summary
	Learning resources

